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Abstract. Clearly a given manifold M may support more than one metric tensor and
generally one may select a particular metric on M via a variational procedure de-
fined on the class of all metrics on M . Obviously the class of all metrics on M is a
subset of the set of all sections of the vector bundle T? M and thus one has a rigorous
framework for any theory which has as its goal the selection of a metric in this way
(in particular, general relativity is such a theory). It is our purpose to develop such a
framework for affine geometry. We do not consider specific procedures to select an
affine geometry analogous to the selection of a metric via the variation of some La-
grangian, but we establish the arena where such procedures would be meaningful. In
the case of Riemannian geometry, this arena would be the set of all sections of the fi-
nite dimensional vector bundle TS M and in this context it is important that covariant
derivatives of such sections are again sections of the same bundle. Moreover, the co-
variant derivative of a given metric is relatively simple as it arises from a linear action
of G&(n,R) on atypical fiber of T? M . In the case of affine geometry we find that
the appropriate arena is the set of all sections of an infinite dimensional vector bun-
dle V(E,V,8) . Moreover, since the group Aff(8) relating «change of basis» is not
compact and acts on the fiber of this infinite dimensional bundle, it turns out that the
group action is not generally continuous when one uses the Whitney C*™ topology on
a typical fiber; rather one must use the Schwartz C™ -topology widely used in the the-
ory of distributions to obtain a differentiable action. Moreover, the action of the group
on a typical fiber is not linear so that the usual formulas for covariant derivatives must
be modified. An interesting consequence of our investigation is that the vector bundle
Y can be extended and the action of the group also extended so that the nonlinearity
is only a «second order nonlinearity», i.e., formulas for the covariant derivative of a
section involve only linear terms and bilinear terms (see Equation 4.2). In addition
to this feature, formulas for covariant derivatives of affine geometries are developed
which are fully analogous to those for covariant derivatives of Riemannian metrics
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(see Theorem 4.2). Symmetry-breaking properties associated with special classes of
affine structures are obtained and parallels are drawn with the metric case (recall that a
metric reduces the linear frame bundle to the bundle of orthonormal frames, symmetry
is broken from the general linear group to the orthogonal group). In the last section
of the paper we show how our formalisny relates to certain already-developed appli-
cations of affine geometry to charged particle dynamics worked out in more detail by
Norris and his collaborators.

1. INTRODUCTION

It is the purpose of this paper to introduce a formalism which is adequate to undertake
a development of affine geometry via techniques analogous to certain of those used in
Riemannian geometry. Although affine geometry has received only a fraction of the
attention bestowed upon its richer counterpart Riemannian geometry, it is the case that
a corpus of maierial exists due largely to Cartan, the rudiments of which may be found
in textbook form in [10] and [11]. The principal object of study in the present work is
the class of all affine geometries defined on a given affine bundle. To our knowledge the
concept of an affine bundle has only recently been cast into a rigorous form. The idea
was rigorously treated by Crampin and Thompson in [2] who in tum attribute the formal
definition to Goldschmidt [5]. There is no apparent overlap of our results with either
of these papers. Even our definition differs slightly from theirs, but our version seems
better adapted to our purpose of studying the class of all affine geometries on a given
affine bundle.

It should be noted that the physics literature abounds with applications of affine geom-
etry, especially to the so-called metric-affine theories of extended gravitation [7). These
theories were initiated for the most part in work of Cartan [1], but have been devel-
oped by a number of authors since that time. Some of this work utilizes various classes
of affine geometries in an attempt to understand interactions between fields defined by
various types of elementary particles and gravitational fields. The present paper derives
much of its motivation from the affine geometrical unification of gravity and electromag-
netism achieved in [9] and [13]. This being the case, certain of our ideas are formulated
within a context which facilitates their application to these physical theories. In particu-
lar, practically all of our results could be formulated within the class of all affine bundles
without reference to what we call pointed affine bundles, but we have chosen to carry
along a global section of each of our affine bundles and keep track of how these sections
relate to our various constructions, especially since such distinguished sections play a
central role in the physical theories developed in [9] and [13].

On the other hand, we emphasize that our results are quite independent of these phys-
ical theories and we believe they have mathematical merit apart from any application.
There are a number of ways in which the development of affine geometry differs from
its Riemannian counterpart. The most significant departures seem related ultimately to
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certain nonlinear features of the theory. These nonlinear features force us away from
the finite dimensional techniques which work so well when one studies Riemannian ge-
ometry and require the development of infinite dimensional techniques. Nevertheless,
parallcls between the two theories exist, even if only at a primitive level. It is our aim to
expose this parallelism between the two theories. In particular, some of these somewhat
primitive ideas of metric geometry which will find a counterpart in affine geometry are
as follows:

(1) if g is an arbitrary metric on a manifold M then there is a vector bundle T; M
such that g is a section of T, M

(2) the set of all sections g of the vector bundle T3 M are in bijective correspon-
dence with equivariant maps § from the frame bundle LM of M into the vector space
T;R™(m = dim M);

(3) the equivariant mapping g : LM — T3 R™ which arises from ametric g carries
LM onto an orbit of a metric g, on the vector space R™ and the type of the metric g
is determined by the type of g, , €.g., g is positive definite if g, is and g is Lorentzian
if g, is;

(4) a metric g reduces the frame bundle LA to the subbundle of g-orthonormal
frames of L M and, moreover, any connection w on LM reduces to this subbundle iff
D*g=0;

(5) there are interesting formulas which involve the covariant derivative of a metric,
in particular if X,Y, Z are vector ficlds on M then

(Vza)(X,Y) = V3(g(X,Y)) — g(VzX,Y) — (X, V3Y) .

Although these properties admittedly capfure only the grossest features of metric ge-
ometry, they do provide a framework within which different metric geometries may be
studied. For example, in a theory in which metric geometry is itself a variable (such
as general relativity) one requires an arena in which one can pose a procedure (such as
the variational principle) for choosing a geometry with specified properties. Heretofore
such an arena has not existed for affine geometries. The present paper addresses this
problem by developing affine ideas which parallel the metric properties (1)—~(5) above.

More specifically our principal object of concern is what we call an affine bundle
(E,V,6). Here E is a fiber bundle with base space a manifold M,V is a vector
bundle also having M as base space, and § is a function whose value at p € M isa
difference function from E, x E, to V,. We referto § as a difference function field
and we show that § plays a role for affine geometry analogous to the role g enjoys
for metric geometry. We now briefly discuss the various affine counterparts to (1)—(5)
above. Let (E,V,6) be an affine bundle fixed once for all.

(1) For p e M the set D(E, - p) of all difference functions from E,x E, to V
is not a vector space with respect to pointwise operations. We find a vector space, whnch
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we denote by V( E,, V,) , that represents the «linear closure» of D( E,,V,) . For tech-

nical reasons this vector space is further enlarged to a vector space V?( E,,V,) whichis

closed under exterior differentiation. Natural topologies are found relative to which both

Y( Ep, Vp) and VZ( E,, Vp) become Fréchet spaces. Both V(E, V) = |J W( Ep, Vp)
, oM

and V2(E,V) := VZ(EP, V,) are infinite dimensional vector bundles and differ-
pEM

ence function fields are sections of both bundles. It is clear that V(E, V) plays the role
of T3 M in this theory and that the nonlinear features force us into an infinite dimen-
sional framework.

(2) For the given affine bundles ( E,V,8) one can build a finite-dimensional affine
frame bundle AE having as structure group the group A, of all affine transforma-
tions of a typical fiber of E. If E and ¥ are standard fibers of E and V respec-
tively then there is a bijection from the set of all sections of V2(E,V) onto the set
of all V2(E,V)-valued equivariant maps defined on AE . Clearly the Fréchet space
Y2(E, V) plays a role analogous to T5R™ in a metric theory.

(3) If « is a difference function fieldon E to V (which may or may not coincide
with §) and & is its corresponding equivariant mapping from AE into V2(E,V),
then & may map AE onto anorbitofsome 6, € D(E, V) C V2(E,V) . Ifso, then §,
in some sense defines the type of « but in this affine theory there are no canonical forms
for 6, in contrast to the metric case. This is due in part to the fact that §, is in general
nonlinear. One may speculate whether some sort of invariants might be formulated in
special cases classifying the various 6, by their jets. We have not attempted such a
classification but we have investigated those & which map onto the orbit of an «affine
difference function» from E x E to V. The set of <affine elements» of D(E,V) is
a finite-dimensional manifold and thus provides a tractable subset of D(E, V) which
may be utilized as a model for development in the general case.

(4) There is a formalism developed for general principal fiber bundles which gives
a mechanism for reducing a bundle. This mechanism works for the affine frame bundle
AEFE just as it does for frame bundles. One difference which occurs in the affine case
is that true reduction may or may not occur depending on the isotropy subgroup of the
element 8, € D( E, V) discussed in (3).

(5) We obtain a number of formulas, some of which parallel similar formulas for
covariant derivatives of metrics. There is a larger variety of expressions for the covariant
derivative of a difference function field than for ametric field simply because the bundles
involved are infinite dimensional. Perhaps the simplest of these results states that if o
is a difference function field from E to V and X is a vector field on M then

(Vxa)(o,p) = Vy(a(o,p)) — da(Vyo,Vyu)

where ¢ and p are sections of E.
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Rather than describe our results in more detail, we prefer instead to indicate briefly
one reason we find it appropriate to study such structures. In [13], L.K. Norris has shown
how to obtain a geometrical unification of electromagnetism and gravity. In this paper
Norris utilizes affine geometry instead of the various linear modifications of Riemannian
geometry which form the basis of most attempts to obtain such a unification. A basic
idea of Norris’ work is that one should have a model for classical particles which al-
lows for all possible configurations of the energy-momentum of a particle in addition to
the usual configurations of position and velocity. If M is a manifold which represents
all possible positions of a particle, then the vector space T, M Arcprcscnts all possible
velocity vectors at p € M . Norris postulates an affine space 11, whose elements are
energy-momentum affine vectors and which represents the set of all energy-momentum
configurations of a particle at p. He also shows that the affine properties of the ge-
ometry are an essential feature of the model theory. His ideas are extended further in
[9] in which certain assumptions are required of the affine geometry but which are only
partially understood. For example, the formula

D(6(%,8) = 6,(D7,D5)

is utilized in the paper but it is not clear what restriction this places on the connection.
One of the aims of the present paper is to provide a mathematical framework relative
to which the basic assumptions in the physical theory developed in [9] and [13] may be
given a mathematically rigorous formulation.

The paper consists of six sections. The first section develops the results we need
about affine spaces. In it we also define the various function spaces which are needed
in the rest of the paper as well as the relevant actions of the Lie group of affine trans-
formations and its corresponding Lie algebra on these function spaces. In the second
section we introduce the rigorous definition of an affine bundle along with the attendant
infinite dimensional vector bundies of interest, we discuss the affine frame bundle of
an affine bundle, and we establish that standard constructions of associated bundles are
valid in this infinite dimensional setting. In this section we also establish the one-to-one
correspondence between sections of V2(E,V) and equivariant maps from AE into
V2(E, V) . Inthe third section we define the exterior covariant derivative of equivariant
maps from AE to V2(E, V) . We show how to use this to define the derivative of sec-
tions of V2(E, V) . We show how these formulas simplify in the special case when the
difference function field being differentiated is «affinely related» to the difference func-
tion field which defines the structure on AE . We also discuss the symmetry-breaking
properties of difference function fields in this setting. In the fifth section of the paper
we consider an alternative way of formulating our results. Instead of considering differ-
ence function fields we consider functions ¢, : E, — V,, which depend smoothly on

14
p € M . These maps and their covariant derivatives seem to encode both information
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found in the corresponding difference function field 6, as well as information obtained
if one chooses an arbitrary section ¢ of E which we think of as a choice of origin in
each affine space E,, p € M . Covariant derivatives of ¢ have terms which cancel out
when one passes to the covariant derivative of the corresponding difference function field
6, . This suggests that these objects may be more useful in physics since unwanted terms
which appear in the new formalism could always be set to zero if they are not needed
whereas they are not even present in the difference function formalism. In the sixth and
final section of the paper we briefly relate our formalism to certain already-developed
applications of affine geometry referred to above.

The author acknowledges his debt to L. K. Norris not only for the initial inspiration
for the paper but also for enlightening conversations about affine geometry and its appli-
cations to physics. Thanks are also due to the participants of the Mathematical Physics
seminar at NCSU for suggestions which led to improvements in the text.

Finally, the author wishes to express his appreciation to the referee of the paper. He
not only provided a reference which eliminated a long uninteresting appendix to the
paper, but he also provided comments which improved the paper as a whole and which
led to a greatly improved version of Section 3.

2. FUNCTION SPACES ASSOCIATED WITH AFFINE GEOMETRY

In this section of the paper we develop some rather basic concepts at the affine space
level which will be expanded in later sections by imposing them on each fiber of an
appropriately defined fiber bundle.

Recall [3] that an ordered triple (A, V,8) is called an affine spaceif § is a function
from A x A to V suchthat ‘

(1) for n,§,( €A, &(n,0) =8(n&+8¢& 0,
(2) for £ € A, the function §; : A -V defined by 6.(n) = 6(§,m) is a bijection. .

If (A,V,6) is anaffine space, then we say that § is a difference functionon A . The
set of all difference functions on A with valuesin V is denoted by D(A, V) . Notice
that generally D(A,V) is not a vector space under pointwise definitions of addition
and scalar multiplication. On the other hand, if we relax one of these conditions we do
obtain a vector space. Let V(A, V) denote the set of all functions o : Ax A = V
such that a(n,¢) = a(n,£) + a(€,{) for n,€,{ € A. Define operations on V(A, V)
by (a;+ @) (1,{) = a;(n,6) +a,(n,€) and (ca)(n,§) = caln,§) for oy, 0, a €
V(A,V), c€R, 1, € A. The set of functions V(A, V) is then a vector space and
contains D( A, V) . We will often find it convenient to work with functions from A to
V rather than functions from Ax A to V . Denote by M (A, V) the setof all functions
from A to V and notice that M (A, V) is also a vector space under the pointwise
operations defined by (6; + ¢,)(8) = &;(£) + ,(6), (cd)(€) = cp(€) where
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$1,82,¢ € M(A, V), c € R, { € A. Consider the function a* : M(4,V) —
V(A,V) definedby o*(¢)(n,€) = ¢(&) —d(n) for € M(A, V), ,n,E € A. Itis
obvious that o*(¢) € V(A,V) foreach ¢ and that o* is linear. Moreover, its kernel
consists only of constant maps. Thus we have:

PROPOSITION 2.1. The sequence

0 - VEM(A,V)BV(A,V) -0

is a short exact sequence. Moreover, if B(A,V) denotes the set of all bijections from
A onto V , then o*(B(A,V)) =D(A,V). »

We leave the details to the reader but observe that one consequence of the proposition
is the obvious but important fact that two bijections ¢ and v from A to V giverise to
the same difference function 6§ = o*(¢) = a*(¢) iff their difference ¢ — 1 is constant.

In subsequent sections we will be required to consider manifold structures on 4 and
V. If we assume V is finite dimensional, then each choice of a basis in V defines
an isomorphism from V onto R". The set of all such isomorphisms is an atlas for
V and it is easy to see that all elements of V* are smooth relative to the corresponding
differentiable structure A . Actually it is easy to show thatif A isany atlason V having
the property that all elements of V* are smooth relative to .A then A C A . Thus there
is one and only one differentiable structure on V' with respect to which all elements
of V* are smooth. If we are given a specific difference function § : Ax A —» V
and a point £ € A, then there is one and only one differentiable structure on A for
which §;: A — V is a diffeomorphism. Moreover, if 8, is adiffeomorphism for some
¢ € A, thenclearly it is a diffeomorphism for all £ € A.

Assume then that we have a fixed difference function §, from A x A onto a finite
dimensional vector space V' and that this function fixes the manifold structure on A
once and for all. Relative to this choice let M,(A,V), V,(A4,V), B,(4,V), and
D,(A,V) denote the set of all smooth functions in the sets M(A4,V), V(A,V),
B(A,V), and D(A,V) respectively. If o} denotes the restriction of o to M,
(A,V), we have the obvious:

COROLLARY 2.2. The sequence
0 - VEM,(A,V)SV,(A,V) 0
is a short exact sequence and oy)(B,(A,V)) CD,(A,V). a
We have enlarged the space D,(A,V) to V,(A,V) because, in subsequent sec-

tions, we will find it convenient to know that certain group actionson D,(A,V) actu-
ally arise as restrictions of a linear action on the vector space V,(A,V) . Thus we think
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of V,(A,V) as a «linear closure» of D,(A, V) . It tums out that this «linear closure»
of D,(A,V) is also too restrictive. We will require also an enlarged space which is
closed under differentiation, i.e., if @ : A x A — V is in the space we also require that
dinpy® be in the space for (7,£) € Ax A . Obviously this latter requirement may only
be made subject to some identifications which we now clarify.

If o1 AxA — V isasmooth function then d(n,f)a is a function from T(n.é)(A x A)
into TV . Since V is a vector space we know that T, V' may be identified with
V, thus d, .o becomes a vector-valued 1-form on A x A. On the other hand, our
differentiable structure on A is itself inherited from the fixed difference function §,,
and, for any fixed {, € 4, §; := (), : A — V isadiffeomorphism. It follows that
(dnét.,)—l o § is afunction from A to T, A and thus

((dy8e) 7' 08)) x ((de) " 05

isa function from Ax A to T,AxT;A. If weidentify d(, na: T,AxTA =V with
the function d, sy = di, g0 [((d,8 )" 08¢ ) x ()" 08 )] then we may
regard d(me)a asamap from Ax A to V. Even withthisidentification o € V,( A, V)
will not guarantee that d, o« isin V,(A,V) ; thus we enlarge our space so that this
property holds in the enlarged space.

Let V2(A,V) denote the set of all smooth functions o : A x A — V such that for
some ordered pair (¢,¢) € M,(A,V) x M (A,V)

o(n,§) = ¢(£) — P(n)

for all (n,6) € A x A. Then each element of V,(A,V) is determined by a single
element of M,(A,V) while each element of V2(A,V) is determined by an ordered
pair of elements of M,(A,V) . Itis clear that V?( A, V) is a vector space under the
usual pointwise operations analogous to those used on V,(A, V).

If m,m : Ax A — A are the projections of A x A onto A, we sec that a €
V2(A,V) impliesthat o = ¢om, —tpom, and consequently deg ey = dedpodi o T) —
d,$odiyem - But &, o= (dedo(deS!) 0b; ) om, —(dypo(dyb; )~ ob)om
which is clearly in Y2( A, V) . Thus under the identification dipy@ = diy o above
we see that o € VE(A, V) implies that d, o € V}(A, V) . We have proven:

PROPOSITION 2.3. The vector space of functions ])32 (A,V) contains V,(A,V) asa
subspace and also has the property that o € V2 (A, V) implies that d, oy € VI (A, V)
forevery pair (1,§) € Ax A.

Eventually we will define the covariant derivative of equivariant functions each of
which has as domain a certain principal fiber bundle with structure group the group of



AFFINE GEOMETRIES DEFINED BY FIBER PRESERVING DIFFEOMORPHISMS 209

affine transformations. The range of these maps is Vf(A, V). Since the covariant
derivative is defined in terms of the action of the Lie algebra of the structure group on
the range of the maps being differentiated, we must show how the Lie algebra of the
grohp of affine transformations acts on V,Z(A, V) . This action is induced by an action
of the group of affine transformations on V?( A, V) which in turn is induced by actions
of this same group onboth A and V. ‘

Assume that (A, V,6,) is a fixed affine space and recall that a mapping f: A —
A is an affine mapping iff there exists a lincar mapping f, : V — V such that
8,(f(m), F(&)) = f1.(6,(n,€)) forall n,€ € A (see [3]). The set of all bijective affine
mappings from A to A is denoted by Aff(6,) . This set of mappings is a group un-
der composition of functions and there is a homomorphism from Aff (§,) onto GZ(V)
defined by f — f, . Itis not hard to show that the kernel of this homomorphism is iso-
morphic to V' under addition. Each choice of £, € A yields a splitting of the sequence
V — Aff(8,) — GEV) and the mapping f — (& (f(§,)), f) is an isomor-
phism from Aff(6,) onto the semidirect product V x G&(V) where the operation on
VX GEV) is defined by .

(v1,91)(vy,97) = (v + 91(”2)__:'91 “92)

for v,v, €V, g,,9, € GUV) .

Observe that there are natural actions of Aff(§,) onboth A and on V. These
actions are defined by (f,n) — f(n) and (f,v) — f,(v), respectively (here f €
Aff(8,), n € A, v € V). These actions clearly induce an action of Aff(§,) on
V2(A,V) via (f,a) — f-a where f-ais defined by

Q.1) (f-a)(n,8) = filal £, F71O)

for f € Aff(8,), a € VI(A, V), nE€A.

Because of our interest in relating our results to the physical theories which in part
motivate our work, we are interested in understanding the implications of a «choice of
origin» in each affine space we consider. Such a choice of origin §, € A provides
us with the identification of Aff(§,) with VxGEé(V) defined above. The actions of
Aff(5,) onthe spaces A and V relative to this identification assume the form

(2.2a) (v,9) -1 =& (g(& (M) + v)

(2.2b) (v,9) - w=g(w)
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forveV, weV, ge GUV), n € A. When the action of Aff(5)) on V is
written in the form (2.2b) it is natural to ask whether it might be more appropriate to
utilize another action of Aff (§,) on V', namely the one defined by

2.3) (v,9) w=g(w)+v

where (v,g) €V xGUV) and we V.

It turns out that if we use (2.3) instead of (2.2) in definition (2.1), then D,(A,V)
will not be invariant; i.e., for &« € D,(A,V) and a € Aff(5,) it need not follow that
a-a€D,(A,V). Generally, « € D,(A,V) has the property that a(n,n) = 0 for
all n € A but (a - a)(n,n) may not vanish. On the other hand, if we utilize (2.2) in
the action defined by (2.1) we see that Aff(8,) - D,(A,V) C D,(A,V) as we require
below.

Since we are interested in keeping track of the «choice of origin» in our affine spaces
and in the subsequent implications of this choice, we find it useful to formalize the con-
cept.

DEFINITION 2.1. To say that (A,V,8,,£,) is a pointed affine space means that (A4, V,
8,) is an affine space and that {, € A. The point £, will be called the origin of
the affine space (A, V,8,) . When Aff(8,) actson apointed space (A4,V,5,,§,) we
identify Aff(6,) with VxGE&(V) as above and we identify the actions of Aff(4,)
on A,V ,and V,z(A, V) with the actions defined by (2.1) and (2.2). Finally, when V
is n-dimensional we denote Aff(6)) = VxG4(V) by A, and its Lie algebra by
6, ¥ VxglV). ' n

Finally, to obtain the action of the Lie algebraon V2( A, V) which we require below,
one proceeds as usual to differentiate the corresponding actions of A, on first A and
then on Vf(A, V). If t — (v(t),g(t)) is a one parameter group in A, , then its

corresponding elementin o, is (9,3) = % (v(t), g(t)) =0 - Thus the action of a, on
A is defined by

i d
0,9 - &= Z[(e(®), (1) -]leo
d
= — 16" (918, (O) + v(1)] 0
= [d8;" 06 ] (67 (35, (&) + D))
Recall that d,6¢ L 5 is the map we use to identify A with T, A thus we have that

2.4) (9,5) - €:= 6 (38, (£) + D) .
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We now proceed to derive a formula for the action of a, on V2(A,V). Let a €

V2(A,V) andlet o, € M,(A4,V) suchthat a=pom, —pom . If t = a(t) =
(v(t),g(t)) isa l-parameter group in A, and & = %(O) then

(@-a)(n,§) :

= %([a(t) -] (1,6)) -0
= %[g(t)cv(a(t)‘l ‘1, a7 )]l0
=7-9() —7-9¥() + dep(—8- &) — dep(—3 - 1)
=g -a(n,§) —d,noa-n, a-§) .
Thus
@.5) G- (n,6) =5 aln,6) — dagye(G-7, 5-£) .

The formulas we have derived above are quite general and throughout the remainder of
the paper we will be interested not only in this general case, but also in one special case
which we have not yet discussed. This special case is concerned not with all maps from
A to V but rather the affine maps from A to V.

DEFINITION 2.2. An element o of vf(A, V) is said to be affine iff there exists affine
maps ¢, ¥ € M,(4,V) suchthat a = pom, — ¢ o, . The set of all affine elements
of V2(A,V) will be denoted by Aff2(A4,V) and the set of all affine elements of
M, (A,V) will be denoted by Aff(A,V) .

REMARK . Observe that if « is an affine element of VE(A,V) and o € D,(A,V),
then it is appropriate to call « an affine difference function and in this case

(2.6) a=pom —pom
for some bijective affinemap p : A = V.

PROPOSITION 2.4. Assume that o € V2(A,V) isaffineandthat a = pom, —yom
for o, € Aff (A, V). If p, and v, are the linear parts of v and v, respectively,
then

1) a= (¢, 06€° om) — (Y, °56., om)+ v, forsome v, €V,

(2) da=da=(p,0T,)—(p,0%,) where 7, and %, arethemapsfrom Ax A
to V defined by :

(08 =&, (m), T(n,&) =8 (§)
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(3) for a € an) a = (Ds‘g)) a = [g;‘p[,] 0%2 - [§1¢L] 071’1 - [‘PL(i’) -
P (D)] + Gv, .

Proof. Statement (1) follows from Equation (2.6) and the definition of an affine map-
ping. Statement (2) follows from the canonical identification da = da made in the
paragraph immediately preceding the statement of Proposition 2.3 along with the fact
thatif £:V — V islinear then d £ = £ foreach v € V. The proof of statement (3)
is an easy consequence of equation (2.5) and statements (1) and (2). .

This completes our discussion of the various function spaces we will need at the
purely affine space level. Our next section will develop these ideas further at the fiber
bundle level. :

3. AFFINE BUNDLES, CORRESPONDING PRINCIPAL BUNDLES AND VAR-
IOUS ASSOCIATED BUNDLES

In this section we introduce the concept of an affine bundle. We study its bundle of
affine frames and show that the affine bundle may be recovered as a bundle associated
to the affine frame bundle and an appropriate action of A, . This result is used to obtain
a bijection from the set of all sections of an affine bundle (E,V,5) onto the set of
equivariant mappings from its bundle AE of affine frames into an appropriate Fréchet
space.

DEFINITION 3.1. Let (E, 7,8) be an affine space and M amanifold. Alsolet (E,V,
§) be an ordered triple such that

(1) (V,M,7,) isa vector bundle over M with fiber ¥V,

(2) (E,M,7) isa fiber bundle over M with fiber E, and

(3) foreach pe M, (E,, VP,EP) is an affine space.
One says that (E,V,8) is a trivial affine bundle with standard fiber (E,V,8) iff
both (V,M,n,) = (M x V,M,n,) and (E,M,7nz) = (M x E,M,ny) are
trivial fiber bundles and &, is given by 6,((p, £),(p, 7)) = 8(,7) forevery p €
M, €7 € E. More generally, (E,V,8) is an affine bundle with standard fiber
(E,V,8) iff each point of M is contained in an open subset U C M such that
(n5' (U),n7 (U, (8|U)) isisomorphic to the trivial affine bundle (U x B, U x V, 80
(m, x m,)) defined above. Here the word isomorphism is understood in the technical
sense of Definition 3.2 below. s

DEFINITION 3.2. Two affine bundles ( E, V},6,) and (E,,V,,6,) overthe same base
manifold M are isomorphic iff there exists a pair of maps (pp, ;) such that
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(1) ¢g: Ey — E, is adiffeomorphism such that o z((E,),) = (E,), for each
PEM,

(2) gy : V; — V, is a vector bundle isomorphism, and

4(3)' the following diagram is commutative:

E,xE & v
P X Vg i Loy
Ez X E2 iz* V2

DEFINITION 3.3. We say that (E,V,8,0) is a poinfed affine bundle over M iff
(E,V,6) is an affine bundle over M and ¢ : M — F is a global section of F.
If (E\,V,,6,,0,) and (E,,V,,6,,0,) are pointed affine bundles, then they are said
to be isomorphic if (pg,py) is an isomorphism from (E;,V;,6;) to (E,,V,,86,)
suchthat pz o0, =0, .

As an example of how such pointed affine bundles naturally arise, consider for the
moment the special case when (V, M, m,) is the tangent bundle of M . Recall that if
LM is the frame bundle of M , then TM may be recovered as a bundle associated to
LM and the usual action of G4(m,R) on R™ via matrix multiplication (we assume
M is m-dimensional). Indeed if G4(m,R) actson LM x R™ via g - (u,v) =
(ug~!,gv) thenthemap ¢, from E = (LM x R™)/G¥¢(m,R) into TM defined
by ¢ ([u,v]) = v"e'- is a vector bundle isomorphism (here v = (p,e;) € LM,
v € R™ ,and [u, v] denotes the orbitof G¢(m,R) whichcontains (u,v) ). Moreover
the difference function field 6, defined by §_ ([u,v],[u,w]) = (w' —v%) e; provides
us with an affine bundle (E,T'M,6,) which implicitly arises from the map ¢, which
identifies E and T'M . In this case we see that the affine structure map §, arises from
the canonical «soldering map» ¢, from E to M via §,(n,€) = ¢ (£) — ¢ (1) . Our
next proposition is trivial but it shows that every solderingmap ¢ : E — T M gives
rise to an affine structure § on the pair (E,TM) .

PROPOSITION 3.1. Assumec that (E, M, ng) is a fiber bundle and that (V,M,wy) Is
a vector bundle. If ¢ : E — V is a diffeomorphism such that p(E,) = V,, for each
p € M, then the function §, defined by §,(n,£) = ¢(&) — p(m) for {,n € E,
and p e M if a difference function field such that (E,V, 6,) 1is an affine bundle.
Moreover, if 0 is the zero section of 'V , then the map o, ! M — E defined by
o,(p) = 0~ 1(0(p)) is a global section of E and (E,V, §,,0,) is a pointed affine
bundle. Conversely, if (E,V, §) isanaffine bundle and E admits a global section, then
for every such section o themap ¢ : E — V defined by ¢ (§) = 6, (o(mp(£)),6)
is a fiber preserving diffeomorphism such that b,, =6 ando, =0.
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COROLLARY 3.2. Every soldering map
¢: ((LM) x R")/Gl(n,R) — TM

defines an affine structure 59, . n

The proofs of these results are left to the reader.

Proposition 3.1 assures us that affine bundles exist in profusion.

For a given affine bundle ( E,V,§) we define the corresponding affine frame bundle
AE = A(CE,V,$) to be the set of all elements (p, e;,t) where p € M, {e,} is abasis
of V,.and t € E,. We define an action of A, on AE by

(p,e;,t) - (v,9) =(p, 6;9,",5;(’,,)(5,(,,)(?3) + U‘le,-))
where o is any section of E and where §,,, is the mapping from E, to V, defined
by £ — 8,,( o(p),£) . Clearly the action is independent of the choice of o . Moreover
it is easy to show that AF is a principal fiber bundle over M with group A, and
projection w : AE — M defined by n(p,e;,t) = p.

Assume that the vector bundle V has fiber dimension n and that (E,V,58,5) is
any pointed affine space of dimension n. Since V is a vector space of dimension n
there is an obvious action of GZ(V) on V and this induces left actions of A, on E
and V as in Section 2 (see Equations (2.1) and (2.2)). Let E and V denote the fiber
bundles associated to AE and the actions of A, on E and on ¥ respectively. In
the next paragraph we show how to define maps §,5 relative to which (E,V,§,5)
becomes a pointed affine bundle. We will then show that (E,V,5,5) isisomorphic to
(E,V,§,0). :

We denote the associated bundlg E and V by E= AEx A, Fand V= AEx A, 14
respectively. Typical elements of E will be denoted by

[u,] = {(ua™!,0d)|a € A,}

for (u,€) € AE x E. Analogous notation is used for V. We define a difference
function field 6: Ex E -» V by

8,([u, 7], [u,&1) = [4,8(5,8)]

for w € AE, 7,& € E. Itis easy to check that § is well-defined precisely when
a-85 =258 for a € A,. On the other hand the actions of A, on E and on ¥ were
defined in terms of & insuchawaythat a -8 =25 forall a € 4,:

(a-8)(7,8) =gba™" -7,a7" - )
= 98(85" (g7 (55 (M) — v)), 85 (97 (B,(E — v)))
= glg7 (85(8) — v) —g7' (B(W) — v)]
= 5,(5) — 8,() = 8(2, &)

3.1



AFFINE GEOMETRIES DEFINED BY FIBER PRESERVING DIFFEOMORPHISMS 215

(here a = (v,g) € A,, (#,€) € E x E). Note that if ¢ is a global section of E then
we may define a mapping : M — E by &(p) = [(p, e;,0(p)),d] . Observe that &
is well-defined as it depends only on & and o and not on the choice of frame {e;}.

With these definitions (E,V,3) is an affine bundle which is pointed when (E, V, §)
is pointed.

PROPOSITION 3.3. The pointed affine bundles (E,V,6,5) and (E,V,6,0) are iso-
morphic.

Proof, Define maps g : E — E and g, : V = V by

(3.2) op([(p,e,1),€1) = 6,1, ((F + t')e;)
and
(3.3) oy ([(p,e;, 1), B]) = e

where 8, (1) = t'e, 5,(8) = &'r;, @ = @'r; and {r,;} is some fixed basis of
¥ . To show that (¢ g Py) is an isomorphism it is sufficient to restrict one’s attention
to elements of AE of the form (p,e;,0(p)) since typical elements of AE such as
(p,e;,t) maybe writtenas (p,e;,a(p)) - ¢ forsome a € A, and since
E={((p,e;,0(p)),Ell(p,e;) € LM,E € E}
V= {l(p,e;,0(p), ®l|(pe,) € LM, W V}.

In this notation ¢ ([(p,e;,(p)),&1) = 6;1,(E',) and oy ([(p,e;,0(p)),B]) =

w'e; where 8;(§) = £'r; and @ = @'r;. It is immediate that both v, and y, map
the fibers EP,VP diffeomorphically onto the fibers E, V, respectively. Moreover it is
obvious that pVIVP is linear. It is easy to check that both maps are smooth maps as this
follows from the analogous arguments in the linear frame bundle case. To check (3) of
Definition 3.1 observe that

8,(0e([(p,e;,a(p), 1), op(((p,e;,0(p)),E1))
= 8, (650 (£ie), 6,05, (Ere))

= (& - &e,

= Si(gl:gz)ei

= oy ([(p,es, a(p), B(E), E)1)

= oy (6,([(p,e;,0(P)), &), [(p,e;,0(p)),E1))
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where 8(£,,&,) = 8(£,&,)r; . Itis obvious that (p505)(p) = o(p) and the propo-
sition follows.

It follows that ( E, V,8,0) may be identified with (E,V,8,3) via (pg,p,) . We
refer to the inverse of this pair (g, py) as the standard soldering of (E,V,8,0) onto

(E,V,5,9) .

This terminology arises from the fact that in the linear theory if welet V = TM be
the tangenit bundle and ¢, : V — V = TM be the standard identification of V =
LM Xgyny R™ with V, then the soldering form © on LM is defined via o' by

6,(X) = u (py!(d,m(X)))

for u € LM, X € T,(LM) . The map ;' is usually suppressed but it is actually
TM which is being soldered via o' to the associated bundle L M Xgenr) R"- In
the affine case one defines E=TM and V = TM . Foreach p, 6, : B, x E, -V,
is defined by BP( v,w) = w —v. Itfollows that (E,V, 8, 0) is a pointed affine bundle
if we define o(p) to be the zero vectorin T, M for each p € M . Then (pg', i)
solders (TM,TM,6,0) to the corresponding associated bundle (E,V,6,5) .

We are now prepared to introduce the vector bundle whose sections are our princi-
pal object of study. For a given affine bundle (E,V,8),let V2(E,V) be the union

U Vf ( E,, Vp) where v3 ( E,, V) is defined as in Section 2 relative to the affine struc-
pEM

wure of §,. Each of the vector spaces Vf(Ep, V,) is infinite dimensional, but given
some reasonable topology on eachof them V2 ( E, V) will acquire a vector bundle struc-
ture. Clearly every difference function field on E defines a section of this bundle and
these fields are the carriers of affine structure.

If E and ¥ are the standard fibers of E and V, respectively, then V2(E, V) is
the standard fiber of V2( E, V) , thusit suffices to find a topology on V?(E, V) subject
to the conditions:

(T1) V2(E,V) must be a Fréchet space,

(T2) the mapping from V,Z(E, V) x E* to V defined by (a,z) — a(x) must
be smooth, .

(T3) the actionof A, on Vf(E, V) defined by equation (2.1) must be smooth.

To see that such a topology exists on V2(E, V), first observe that C=(E?, V)
may be identified with C°(R2?" R) . If we give C°(R?*" R) the weakest topology
which implies uniform convergence of sequences of functions and their derivatives on
compacta, then C*(R2" R) , and thus C°( E?,V) , is a Fréchet space. This topology
is called the Schwartz C*-topology and although Rudin does not refer to it by name he
discusses it and its properties in detail in [14] (see pages 33, 137). Since Vf(E, V) is
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a closed subspace of C°( £2,V) , it is a Fréchet space as well. Thus V2(E, V) satis-
fies condition (T1) above. Straightforward, but lengthy, arguments may be constructed
which show that (T2) and (T?3) also hold. The author is indebted to the referce for the
observation that such arguments can be circumvented by noting that Fréchet spaces are
convenient vector spaces in the sense of {4] and that (T2) and (T3) follow from the gen-
eral results established for convenient vector spaces in [4]. These remarks prove part (1)
of the following theorem. ]

THEOREM 34. If (E,V, 6) is an affine bundle over a manifold M with standard fiber
(E , f/, 3) , then
O v¥( E, V) is a Fréchet space relative to the Schwartz C™ -topology described
above and V2(E,V) satisfies (T1), (T2), (T3) relative to this topology,
2) V*(E,V) = U VX(E,,V,) isavectorbundle with standard fiber V2(E, V),
pEM

p 'p
and

(3) for arbitrary smooth (local) sections ¢,,0, : U - E of E and o : U —
V2(E,V) of V*(E,V) the mapping defined by p — oa(p)(c,(p),0,(p)) is a
smooth sectionof V .

Proof The proof of statement (1) was outlined prior to the statement of the theorem.
The proof of (2) requires the development of some ideas which are useful below. Con-
sequently we defer the proof of (2) preferring to first prove (3) using (2). Given local
sections 0,,0, : U — E and « : U — V2(E, V), it is obvious that the mapping
af0o,,0,) defined by p— a(p)(o,(p),0,(p)) is a section of the vector bundle V.
We have only to show that a(o;,0,) is smooth. Since smoothness is a local prop-
erty, it suffices to assume that E,V and V2(E,V) are trivial over U with trivializing
mappings ¥y, oy and Iy, respectively. It is shown in the proof of (2) below that T,
may be defined to be the mapping from UU VX(E,,V,) to U x V2(E,V) given by

pE

ru(ﬂ) = (p, BU) where 8 € V,Z(Ep, Vp) and where
By (31,6) = m, (o (BW5 (0, ), 5" (2,6))))

for (7,6) € Ex E.Ifwedefine §:U — E, i=1,2,by (p,€Ap)) = ¥y(o,(p))
forall p € U, then clearly 51,52 are smooth and, foreach pe U,

a(ay,0,)(p) = pg'(p, a(p) y (€, (D), & (p))) .

The mapping p — c;(vp)U is smooth since a’(;)[, = my(T'y(a(p))) . It follows from
the topological property (T2) above that the mapping p — «(p) U(f ,(p),éz(p)) is
smooth. Thus a(oy,0,) is smooth and (3) follows.
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To prove (2) it is necessary to show that there exists a family {I';} of trivializing
mappings whose transition functions are smooth. It tums out to be useful to know that not
only is this true but, in fact, these transition functions are related to transition functions of
AE in such a way that one can show that the vector bundle V2(E,V) is an associated
bundle of AE . Since we need this fact in Sections 4 and 5 we proceed to develop these
ideas in more detail.

Assume that we are given an open cover {U} of M and, for each U in the cover,
a pair of trivializing mappings

Yy g (U) s UxE oy :np(U) 5 UxV

which satisfy the third condition of Definition 3.2. For U and W in the cover such that
UNW #0.let fyw: UNW — Diff (E) and gyy : UNW — GUV) be defined
by

(P © ¥5)(2,8) = (D, Fyw(P)(E)

3.4
(ow © 95 (2,0 = (P, ggw(P)(E))

forpe UNW and € € E, ¢ € V. We have assumed that the maps {p,} are
all linear on fibers and it can be shown using (3) of Definition 3.2 that the mappings
fuw(p) are affine mappings for each p € U NW . Indeed an easy computation shows
that

3 fyw (D)D), fyw(® (M) = gyw (P (B, 7))

for pe UNW, &,7 € E . This fact may be used to show that
3.5) Fow(P) (&) = & (gyw ()8, () + v(p)

where p e UNW, f € E, ty € E,and v(p) = Sto(fUW(p)(tO))' Given 1, €
E and a fixed basis {&;} of V we define local sections {r;} of AE by 7;(p) =
(p, tp{,l(p, €), 1/)[71(1), ty)) for pe U.If U and W are members of the given cover
of M suchthat UNW ¥ then 7; and 7y, are related by the identity

(3.6) 5(P) = Ty (P ayy (p)

where p € UNW and oy (p) = (v(p), 9yw(p)) € VXGUV) . Thus {ayy} isa
set of cocycles of AE , the cocycles determined by the local trivialization of (E, V,§) .

Using the trivializations {y;} and {p,} we define mappings {I';} as follows.
For each U in the cover, let T, be the mapping from V2 (75 (U),n; (U)) into
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U x V2(E,V) defined by Ty(a) = (n(a),ay) , where « : V2(E,V) — M is
given by requiring that 7( vz(Ep, V,)) = p forevery p€ M and where

ay(€,7) = my(pla(yy' (1), ), ¥5' (n(a),M))))

for £, € E. The mapping T, is a bijection and is linear on fibers. Moreover, for
peUNW, aen1({p}), we have

ay (€, =m (pu(al(dy) (0,8, 95 (2,M)))
=9yw(P) (my((py 0 a0 (Y5 x ¥z")
((p, fau(® (), (p, fwrur (D (TN
=9uw(P) @y fwu (P (D), fwy (P (D)

for £,7 € E . If we define maps {hyy} by

3.7 hyw(D)(B) = gyw () 0 Bo (fyw (P~ X fyw(®™)

for pe UNW and B € n~'({p}) ,then

Ty (@) = (7(@), by (p) (1 (Ty()))
and
(3.8) (Ty o T (p, & = (9, hyp (D) (&)

forpe UNW, a € 7 '({p}), & € V2(E,V) . Thus {hyy} is a set of transition
functions for V2(E, V) and it will follow that V2(E, V) is a vector bundle if we can
show that the {h;;y;,} are smooth.

Itis obviousthat g, and fi;y, are smooth and consequently so isthe mapping @, :
(UNW) xV? - GUV) x V? x Aff (E?) defined by @,(p,&) = (gyw (D), &, fyw
(! X fyw(p)~!) . Moreover the mapping ®, : GUV) x V? x Aff(E?) — V?
defined by ®,(g,&,f) = go &o f is also smooth (see [4], [6], or [12]). Since
hyw(P)(&) = @ (P(p,&), for p € UNW, & € VH(E,V) it follows that
(p,&) +— hyy(p)(&) is a smooth mapping. Many authors consider this to be ade-
quate in order that V2(E, V) be a vector bundle (see [6] or [12]). Others require that
hyw : UNW — End(V?(E,V)) be smooth. Since V2(E, V) is a Fréchet space, it
is a convenient vector space in the sense of [4]. It follows from Theorem 3.6.5 of [4] that
End (V2(E,V)) hasaconvenient structure relative to which the mappings {hyy } are
smooth. Thus V2(E, V) is a vector bundle in this stronger sense as well. The proof of
Theorem 3.4 is now complete.
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Observe that in the process of proving Theorem 3.4 we have shown that the mappings
{ayw]} defined by (3.6) is a set of cocycles for the affine frame bundle AE, and that
{hyw} isasetof cocycles for the vector bundle VZ(E,V) (see equation (3.8)). More-
over, equation (3.5) shows that f;;,(p) is the affine mapping on E whichis identified
with (v(p),gyw(P)) = ayy (p) relative to the splitting of Aff(8,) as a semidirect
product VxGZ(V) defined in Section 2. Thus we may identify the mappings {fi; }
as a set of cocycles of AE , and equation (3.7) shows that the {f;;y,} and {hyy} are
related by the identity

(3.9 hyw(P)(B) = fyw(P) - B

where p € U NW and where f;;,(p) - B denotes the action of fi;4(p) € Aff(§)
on B8 € VX(E,V) defined by equation (2.1). A local trivialization for the vector bundle
AE x4 v2( E, V) is given by the family of mappings {f‘U} defined by requiring that

Ty([my(p),a]) = (p,&

for p € U, & € VX(E, V). It follows easily from (3.9) that the {hyy;,} are tran-
sition functions for this trivialization. Moreover, general arguments such as those in
Husemoller [8], pages 59-64, and Vaisman [16), page 106, show that V2( E, V) is iso-
morphic to the bundle associated to the affine frame bundle AE and the action defined
by equation (2.1). Neither of the cited references formulate their arguments in the cat-
egory of Fréchet vector bundles, but Frolicher and Kriegl (4] provide us with a setting
general enough that the usual arguments may be used to show that V2(E,V) is iso-
morphic to the associated bundle AE x AR (&) Vf(E, V). .

COROLLARY 3.5. The vector bundle V*(E,V) is isomorphic to the bundle associated
to the principal bundle of affine frames AE of (E,V,6) and the action of V xGEé(V)
on the Fréchet space V2( E, V) defined by equation (2.1). =

Although the cocycle argument given above proves Corollary 3.5, we find it useful
to have: an explicit formula for this isomorphism in Sections 4 and 5. For (u,a) €
AE x V2(E,V) ,let (u,a)* denote the element of V2(E,V) defined by

(3.10) Cu, ) (Lw, 7, (4, &) = [u, a7, 6)]

where u € AE, 7,§ € E and n(u) = p. Here E = AE x, E, V = AE x,_
¥ ,and V2(E,V) isidentified with V2(E,V) . The mapping (u,a) +— (u,@)* is
constant on orbits of the action of A, on AE x VE(E, V) and consequently defines
a mapping from AE x, V2(E,V) := [AE x V}(E,V)1/A, onto V2(E,V). A
straightforward, but tedious argument, shows that the mapping defined by

(3.11) [u,a] — (u,a)*
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is an explicit isomorphism from AE x V2(E,V) onto V*(E,V).

With Corollary 3.5 in hand, it is trivial to obtain the usual one-to-one correspondence
between sections of V2(E, V) and equivariant maps from AE into V2(E, V) . Given
asection o : M — V2(E,V) & AE x " V2(E,V) the corresponding equivariant
mapping is the unique equivariant mapping & : AE — V2(E, V) such that

G.12)  o(p) = [4,5(u)]

forany u € AFE such that n(u) = p. Conversely, given any equivariant mapping
6:AE — vf(E, ¥) , equation (3.7) clearly defines a unique section o of V2(E,V).

PROPOSITION 3.6. Assume g, 7 : U — E are arbitrary local sections of E and that « :
U — V2(E,V) isany local section of V*(E,V) . Let &,%,& be the corresponding
equivariant mappings from (AE)|U into E,E, and V?(E,V), respectively. Then
&(&,7) isanequivariant mapping from (AE) |U info V and the corresponding section
of V is a(o,T) .

Proof. For u € AE and a € A, we have

&(6,7)(ua) : = &(ua)(6(ua),7(ua))
= (a7 &) (w (e - &(u), a7! - H(u))
= g '&(u)(aa18(u), aa~'#(u))

= g~'&(5, %) (u)

where a = (v,g) € A, . Thus &(&,%) is an equivariant mapping from AE into V.

To establish the correspondence between a(o, 7y and &(&,%) we find it convenient
to pass to associated bundle notation: E ¥ E, V = V ,V}(E,V) ¥ VX(E,V) &
AE x, VI(E,V) . Then

a(o,7)(p) = a(p)(o(p),7(p))
= [u,8&(uw)]([4,6(w)], [y, T(u)])
= (u,(u))*([v,5(w)], [y, 7(u)])
= [u, &(u)(6(u),(u))]
=[u,&(&,7)(u)]

forany u € AF such that 7(u) = p. The proposition follows. ]
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4. COVARIANT DERIVATIVES OF DIFFERENCE FUNCTION FIELDS AND
THEIR GEOMETRICAL INTERPRETATION

In this section we develop fundamental facts about the covariant derivatives of differ-
ence function fields defined on a given affine bundle ( E, V, §) . To do this we first con-
sider the exterior covariant derivative of equivariant maps & from AE into V2(E,V) .
This derivative will lead us to corresponding facts regarding the covariant derivative of
sections of VI(E,V) ¥ V?(E,V). This procedurc is analogous to a correspond-
ing development for metrics whereby exterior covariant derivatives of equivariant maps
g : LM — TJR" lead to relevant facts rcgarding the covariant derivative Vg of
metrics g defincd on a manifold M . In this section we will also discuss the extent to
which an equivariant mapping 6 defined by a difference function ficld § may be re-
garded as a symmetry-breaking field. In such a case we will see that a connection w on
AE reduces to a subbundle 3‘1(80) iff D“8 = 0 . This development is again analo-
gous to what happens in the metric case whereby a connection w on the frame bundle
LM reducces to the bundle of orthonormal frames iff D¥g = 0 . There arc important
differcnces, however, as it is not clear under what circumstances a difference function
field induces a symmetry-breaking equivariant mapping §. We arc able to analyze the
situation in the special case that & has its values in the space Aff2(E, V) ND,(E, V)
of affine difference function ficlds.

We first show how 10 obtain the exterior covariant derivative of an arbitrary smooth
equivariant mapping & from AE into V2(E, V) . This is given by the usual formula
once one has a definition of the exterior derivative. The way has been paved for this in
Section 3. Even though Vsz (E, V) isinfinite dimensional we need only the topological
conditions (T1) - (T3) to guarantce that for v € AF and X € T ,(AE) wc may define
d,&(X) by the formula

(d,8)(X) = L(@om(0)

where v : (—€,¢) — AFE is any curve such that v(0) = u, #1(0) = X . Morcover, it
follows casily that
(d,6)(X)(#,6) = d,(evzz 0 &)(X)

where ev; ¢ o & is a function from AE' into the finite dimensional vector space V .

In particular we have

“.1) ev( s g © da = d( eV d © &)
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DEFINITION 4.1. If w is a connection on the principal fiber bundle AE and & : AFE —
V,Z( E, V) is an equivariant mapping, then the exterior covariant derivative of & , de-
noted by D“& = Dé, is the mapping from TAE into V2(E, V) defined by D, &
(X) = d,&(hor X) for u € AE, X € T,AE. Here hor X denotes the horizontal
part of the tangent vector X (see [10]).

Since & : AE — V,Z(E, V) has its values in a vector space the standard argument
applies to show that one still has the identity

“4.1) (D, @) (X) = d,a(X) + w(X) - &(u)

for u € AE, X € T,AE . Here w(X) - &(u) denotes the action of the Lie algebra
element w(X) € a, on &(u) € V,Z(E, V) explicated in Section 2. In fact it follows
from the definition of this that

(D, &) (X) (7,8 =(d &) (X)(#H,8) + w,(X) - &(u) (7,

4.2) -

~ dig 5 (@(8) (W(X) -7, w(X) -E)
where u € AE, X € T,(AE) and #,¢ € E. Here w (X) denotes the dlinear
part» of w(X) and the term d(ﬁ,f)( &(u)) is indicative of the nonlinearity implicit in
elements of VE(E, V).

When one considers the fact that equivariant maps of the type & arise from general
diffeomorphisms, it is somewhat surprising that all the nonlinear features of D& may
be encapsulated into the one term d(,."g)(&( u))(w(X)7, w( X)E) . On the other hand
this term is in general not easily simplified (although the bilinearity of d(&(u)) is of
some use in this respect).

In the special case that & has all of its values in the set Aff2(E, V) of affine el-
ements of VE(E, V) some reduction of (4.2) is possible. In more detail, recall from
Section 2 that if &(u) € Aff2(E,V) then there exist linear maps £,(u), £,(u) from
¥ to ¥ and a vector v(u) € ¥ such that

&(u) = £,(u) odyom, —£,(u) 085 0m + v(u) .

Since v(u) = &(u)(7,5), £, (u)(z) = &(u)(5,8;'(z)) — v(u), and £,(u)(z) =
~&(u)(851(2),8) + v(u) forevery u € AE and x € V, we see that £,,£, and
v are smooth functions. It follows from (3) of Proposition 2.4 and the identity D & =
d, &+ w-&(u) that

s D& =d, &+ [wy, &, ()] o7, — [wy, & (u)] o,
3)
—[£,(u) owp — £,(u) owp] + wy - v(w)
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where w = w; + wy.

Since our primary objective is to develop an appropriate arena for affine geometry
we are mostly interested in maps & which have their values in D, ( E, V), the set of
difference functions on E . There is no appreciable reduction of (4.2) for this case, but
if & has its values in the set Aff2(E, V) N D,(E, V) of affine difference functions

then (4.3) reduces further and we have the result:

PROPOSITION 4.1. Assume that & : AE — V}(E, V) is an equivariant mapping with
values in the set Aff2(E,V) N Dy E,V) of affine difference functions. Then
(1) there is a function £ from AE into GV such that
(i) £(ua) = g7'&u)g, and
(i) &(u) = €&(u)d forevery u € AE and a = (v,9) € A,,
(2) D&=d,&+[wy,wld,and
(3) D,&a=(D,0)&u)"" -&(u) forall u € AE.

Proof. To see that (1) (ii) is true observe that if & is affine we know that
a(u) = £,(u) o Sa om, —£;(u) 035 om + v(u)
for linear maps £,(u), £,(u) and some vector v(u) . Since &(u) is assumed to be
a difference function it follows that v(u) = &(u)(&, &) = 0. Moreover, we also
have that &(u)(z,5) = —&(u)(&,r) foral = € E, from which it follows that
£,(u)(8,(2)) = £,(u)(8;(x)) forall z € E. Thus £, = ¢, and
a(u) = £,(u) o (5, 0my — 85 0m) = £,(u)b.

To see that (1)(i) is true observe that the equivariance of & implies that £(ua) o 5=
-1.[¢(u) o8] forall u€ AE and a = (v,g) € A, . Now

(o' - [£(u) 0 81 (7,6) = g7 &(u)(8;(ad) — 8;(aM))
= g7 2(u) (g8,(&) — 985(7))
= (g7 e(w)g)8(7,6) .

It follows that 2(ua) = g~ '4(u)g and (1) is proven. Statement (2) follows easily from
formula (4.3) and the fact that £, = ¢, . Finally, (3) follows from the equation

Da=da+ [wy, 8= (de+ [w;, )6 =((DOL Ha.

Thus Proposition 4.1 is established. n
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At this point we consider the problem of how one covariantly differentiates a section
a of V*(E,V) with respect to a vector field X defined on M . We also derive a
formula for this derivative which is analogous to a corresponding formula for Vg
which arises in metric geometry.

In particular we recall that if g is a metricand X and Y are vector fields then

(V20)(X,Y) = V;(g(X,Y)) — g(V;X,¥) — g(X, V)

for each vector field Z . Metric geometries are characterized by requiring that V,g =
0 for all Z. It is our purpose, in the next few paragraphs, to develbp a formula for
difference function fields analogous to this known formula for metrics. An equation of
thetype Vya = 0 forall X would then define «affine geometries» at a more primitive
level than may be accomplished using metrics.

The formula we derive states that for every vector field Z and sections ¢ and v of
(E,V,8,5) ¥ (E,V,6,0),

(Vza)(p,v) = Vz(al(p,v)) —daVyp, Vyv) .

To make sense of this formula we need to know how to differentiate sections of the vector
bundle V?(E,V). .

Recall from [10] (page 115) how the covariant derivative of a section of a vector
bundle is related to the exterior covariant derivative of its corresponding equivariant
mapping. If (P, M,x) is a principal bundle, G x 7 — ¥ is an action of the struc-

" ture group G of P on a vector space ¥, and V is the corresponding vector bundle,
then covariant derivatives of sections o of V correspond to covariant derivatives of
equivariant mappings ¢, : P — V via the formula

(Vx0), = [4, X39%,] = [u, D, (X)]
for u € P, p=m(u), X € Tp,)M and X the horizontal liftof X to u € P.

DEFINITION 4.2. Let w be any connection on AE. If « is a section of the vector
bundle V?>(E,V) and X is atangent vectorto M at p € M we define Vxa by
the formula (an)p = [u,(D,6)(X])] where u € AE suchthat w(u) = p, & is
the equivariant mapping from AFE into VE(E, V) corresponding to «, and X isthe
w-horizontal liftof X to u. -

If X is a vector field on M and '« is a section of vz(E, V), then Vya is a
sectionof AE x, V2(E, V) which we have identified with V2(E,V) & V2(E, V).
Relative to this ide‘ntiﬁcation we have the formula

(Vxa)([u, 7], [4,€]) = (u,(D,&(XN*([u,7],{4,E])
= [u, (D, &) (X)) (7,6)]

for u € AE, #,€ € E. Here X* is the horizontal lift of the vector field X to AE
and the symbol x is defined by equation (3.10).

4.4)
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THEOREM 4.2. If yu and v are sections of the affine bundle (E,V,8,0) and « is a
section of V*(E,V) , then

(Vxa)(p,v) = Vy(alp,v)) — da(Vyp, Vyv)
for every vector field X on M .

REMARK, Before we proceed with the proof of Theorem 4.1 we clarify what we mean by
da V1, Vxv) . The function daf Vi, V1) is a compact notation for the section
of V defined by

da(qu, V)(V)(p) = d(”(p),,,(p))(OI(P))((VXM)(P),(VXV)(P))

forall pe M.
We find the following lemma useful in the proof of the Theorem.

LEMMA43. If u € AE, p=n(u), and X is the horizontal lift of X, to u, then

da(Vyu,Vxv)(p) =
(4, dagu peuy (B W) (D A(XJ), DX )]

where 1,0, & are the equivariant mappings corresponding to the sections j,v,a , re-
spectively.

Proof. Let (7,,€) € Ex E, v, = [u4,7,], w, = [u,&,] . We first show that

Ay, (P (L, i, [, ED) = [, dg ¢, (8Cw) (7, O]

for all #,§ € E (here we identify (E,V,6,0) with (E,V,8,8) ). Let \x :
(—¢,6) — E be curves in B such that A\(0) = 7,,x(0) = £, and £(0) = 7, &

0) = £ (here we identify T"‘E and Te,E with E via the mappings 8;' o d; &;
and 6 1o dg 65 respectively). We have that
a(p) ([u, M(D)],[4, k(D)D) = [u,&(u)(A(t),x(1))]

for t € (—¢,¢) . Differentiating at t = 0 yields

A,y (AP (Tu, 1, [, €]) = [u, dgg, ¢, (&) (7,)]
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Since u(p) = [u,4(w)], »(p) = [u,¥(u)] for u € AE, p = w(u) this result
implies that

d(adp))((Vxp)(p) ,(Vx1) (D))

= deyipy wien (AP ([, D (XD, (6, DAUXDD)

= [U,d(p(“),;,(u))d(&(U))(Duﬁ(x.:), Duﬁ(X:))] .

The lemma follows.

Proofof Theorem 4.2. In order to establish the result Va(u,v) = Vi (a(y,v)) —
da(Vyu, Vyv) it is convenient to write each term in terms of the exterior covariant
derivative on the bundle. The lemma does this for da(V xu, Vxv) . It was shown in
Proposition 3.6 that &(fi, D) is the equivariant mapping corresponding to the section
a(p,v) of V =V . Thus, by definition,

V(e ) (P) = L4, Dy(&(f 9))(XD)]
It follows from Equation (4.4) that

(V@) (u(p), (p)) = [, (Dy&) (X2 (A(w), H(u))] .
Thus the identity we are trying to establish reduces to |

(D& (X)) (i(u), H(u)) = D(&(f,0))(X)
— Gy i) (B(W)) (DB (X)), (D, X5)) -

Since X is horizontal the latter identity is equivalent to
(d, &) (XD (B(u),D(v)) = d,(&(h, 2))(X})
— dgay oy (B0 (d,B(X), d,5(XD)) .

It remains only to verify this identity. L.et f: AE x AE — V be defined by
flv,w) = a(v)(a(w), H(w))

andlet g : AE — V be givenby g(u) = f(u,u) = &u)(2(u),>(u)). Now
d,9 = (@1 )uw + (22 iy Where (d;f),,, isthe exterior derivative of the map
z — f(z,w) at z = v and (d,f),,, is the exterior derivative of the map y —
f(v,y) at y = w. But f(z,w) = &(z)(p(w),H(w)) = (ev(p(w)';,(w)) o &)(z)
implies that (dlf)(v’w)(X) = d”[ev(ﬂ(w),uw))o ajXxy = [ev(ﬂ(w)’b(w))odv&](X) =
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(d,6)(X)((w), (w)) forevery (v,w) € AE x AE and X € T,AE . Thus we
have

4.5) (dy Fa(X) = (4,8 (X) ((w), H(w))

On the other hand observe that f(v,y) = &(v)(i(y), ¥(y)) = [&(v) o (& x ) 1(y)
for each y € AF, and consequently

(43 Ny (V) = iy suyy (8(0)) 0 dy (B x D) I(Y)
= [ dpgw) o) (&) 0 (d, i x d, 1Y)

forall v,w € AE, Y € T AE . Thus we have
4.6) (dflf)(“,u)(Y) = d(;,(u)’;,(u))(&( u))(duﬁ(Y),d“f/( Y).
It follows from (4.5) and (4.6) that

d,9(2) =(d,&)(2)(a(u),&(u))
+ d(ﬂ(u),b(u)(&(u))(duﬁ(Z),duf/(Z))

foreach u € AE, Z € T,AE . Thus

d,(&(4,0))(2) = (d,&)(Z)(p(u), D(u))
+ depeuy,pu (AW ((,8)(2)(d,2)(2))

and the theorem follows. »

REMARK. Recall from Section 2 that if (7,€) € E x E and u € AE, then d(ﬂg)
(&(wu)) is regarded as a mapping from E x E to V via its identification with d( O
(&(u)) which is defined by

iy (8(0)) = dig gy (&(u)) 0 [((dy5,) " 08, x ((dgb,) ™' 05,)].

Although we do not explicitly use the fact, it is interesting to note that for fixed (#,€) €
E x E the mapping from AE into Vf (E,V) defined by

t = dig g (&)
is an equivariant mapping relative to the action of A, on v}( E, V) defined by

[(v,9) - B)(7y, &) = gB(8; ' (g7 - 8,(7)), 851 (7! - 8,(€))))



AFFINE GEOMETRIES DEFINED BY FIBER PRESERVING DIFFEOMORPHISMS 229

for (v,g) € A,, BE€ VX(E,V), (7,§) € E*. Thusif & is cquivariant relative to
the «usual» actionof A, on v} (E,V) ,thenthe map u — des.6(&(u)) iscquivariant
relative to a modification of the usual action which gets rid of the «translational part» of
the action. The proof of this remark is easy but tedious and is left to the reader.

Recall that if g is ametric on amanifold M and § is the corresponding equivariant
mapping from the frame bundle LM to T7R", then a connection w is a metric con-
nection iff w reduces to the orthonormal frame bundle and this is true iff D=0 . In
this case the orthonormal frame bundle is a «level surface» of the mapping g .

Inour present context note thatif & : AE — VZ(E, V) isequivariant and if &( AE)
is a single orbit of V2(E, V) relative to the action of 4, on V2(E, V), then for
each a, € &(AE), & !(«a,) isasubbundlc of AE with structure group the isotropy
subgroup of «, (see [15], page 297). In such a case we say that & reduces AE . In the
case that & reduces AM a given connection w on AM may or may not reduce to the
subbundle &1( a,) . Infactit is well-known that w reduces to &‘1(ao) iff DYa&4 =20
(see [15], page 298).

One feature occurs in the present context which has no parallel in the metric case.
We have a given difference function § on £ x E which has played a central role in
all that we have done (recall that the action of A, on E depends on & and thus so
does the extended action of 4, on VE(E, ¥) ). We may define a mapping & : AE —
vf(E, V) by requiring that 5(u) = 3 forall u € AE . It follows from (3.4) of Section
3that a-6=5 forall a € A, and consequently 8 is equivariant. Moreover, the fact
that a -8 = § forall a € A, impliesthat b-8 = 0 forall b € a,. Thus, for any
connection w on AE, D6 = 0. It follows that for this special mapping 4 no real
reduction actually occurs although the formal definition of bundle reduction is satisfied.

On the other hand it is easy to see that there exist difference function fields which do
reduce AE . This is the case if « is a difference function field whose corresponding
equivariant mapping & carries AE onto an orbit of the difference function «, = ZOS
for some linear mapping £, from VwV.

THEOREM 4.4. Let £ : V — V be any lincar mapping and let o, = ZOS . An equivari-
ant mapping & : AE — V2(E,V) carries AE onto the orbit of £,5 iff &~'(£,8) is
a subbundle of AE with structure group

Gy ={(v,9) € 4,]lg,4,)=0}.

If & carries AE onto the orbit of £,6 where £, is bijective and if we define £ : AE —
Y(V) by a(u) = £(u)8, then £ is an equivariant mapping with respect to the action
of A, on G V) defined by (v,g) - h = gh~'g . Morcover, any given connection w
on AE reducesto &~'(2,8) iff 0= D“¢=dl+ [w,0].
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Proof. First observe that if a = (v,9) € A, and (#,§) € E x E then (a -
a,)(7,8) = (94,97 (g8(a™'%,878)) = (g€,97")(a - 8)(7,6) = (92,971 8(7,€) .
Thus the orbit of «,, is given by

A, -a,={(gt,g7")8|g € GU))}.

The same computation shows that the isotropy subgroup of «,, defined to be the set
ofall a = (v,g9) € A, suchthat a-a, = a,, is precisely the set of all (v, g) such
that g¢,g~! = £,. Thus if & is an equivariant mapping which carries AE onto the
orbit of some affine difference function @, = £,6 then & has the finite dimensional
vector space g#( V)8 as its range and consequently & reduces AE to a subbundle of
AE having as structure group the set of all (v,g) € A, suchthat {g,£)] = 0 (see
[15], page 297). If we define an action of A, on G&(V) by (v,g) - h = ghg™' for
(v,9) € A,, h € G V) , then the computation in the first sentence of this proof also
shows that if we define ¢ : AE — G&V) by requiring that &(u) = £(u)§ then
#(ua) = g7'8(u)g=a"!-4(u) forall a € A, u € AE . The fact that w reduces to
a71(e,8) = £71(¢,) iff D¥¢=0 is well-known (see [15]). .

5. AFFINE STRUCTURE MAPS AND THEIR COVARIANT DERIVATIVES

In the physical theory [13] which motivates this investigation one wishes to allow
the possibility that both the difference function field § and the section ¢ of an affine
bundle (E,V,8,0) be variable. This situation is analogous to that which occurs in
general relativity. In that theory the arena is a spacetime manifold in which the metric is
not given directly but rather is selected by Einstein’s equations along with appropriate
boundary conditions. Thus one considers the class of all metrics on the given spacetime
manifold and utilizes a variational principle to select the physical metric. In the affine
unified theory of gravity and electromagnetism initiated in {13] it is not yet clear what the
basic variables will be. It is likely that the metric g , the difference function field 6, and
the section ¢ will all play a fundamental role. It is probable that the triple (g,6,0) will
participate in some way in a variational procedure to sclect the appropriate metric-affine
theory to describe gravity and electromagnetism.

Given an affine bundle (E,V,6,0) we observed in Section 2 that § defines a diffeo-
morphism ¢; : E — V which is fiber preserving and which carries o to the 0-section
of V. This mapping is defined by ¢4(§) = 5,,E(€)(cr(7rE({)),£) . Conversely, if
¢ : E — V is any fiber preserving diffeomorphism, then a difference field 5, may
be defined from E x FE to V by

(6.0p(n, ) = (&) — p(m).

At first sight it appears not to matter which formalism one uses, but we claim that the
mappings ¢ : E — V which are fiber preserving have more potential information
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in them. Our reason is that the difference function ficld §, which corresponds 10 ¢
ignores any changes in ¢ due to a translation along the fibers of V. More precisely,
if 1p E — V isdefined by $(§) = o(§) + M wg(§)) where A : M — V isan
arbxtrary section of V , then for all £, 7 in the same fiber of E we have

6 (n,8) = (&) — (M = p(&) — p(n) =6,(n,§)

so that §, = §,. The covariant derivatives of ¢ and ¢ will be distinguished by the
covariant derivatives of their translational parts whereas the covariant derivatives of §
and 8, are, of course, identical. This difference shows up most clearly for the case
of affine difference function fields especially when one compares Proposition 4.1 (2) to
Theorem 5.2 below.

Thus in this section we derive formulas for the covariant derivatives of fiber preserv-
ing diffeomorphisms from E to V . We will also briefly discuss the question as to what
functions should play the role of the «components» of a difference function field relative
to the choice of an affine frame at each point of M .

DEFINITION 5.1. Assume that E is a fiber bundle and that V is a vector bundle. A
smooth mapping ¢ from E to V is called an affine structure mapping iff it is a fiber-
preserving diffeomorphism. In this case we refer to 6«: as the corresponding affine
structureon E . ]

In the next few paragraphs we derive a formula for the covariant derivative of arbi-
trary affine structure mappings relative to a given connection w on AE . The procedure
is simplified if we make some identifications.

As before let E be the standard fiber of E and V¥ the standard fiber of V. Let
{r,} be a fixed basis of ¥ and identify ¥ with R™. We distinguish two actions of
A, on ¥ = R™. The first of these actions is called the linear action and is defined by
(v,9) -w=guw for (v,9) €EA,, w€ ¥V = R™. The second action is called the affine
actionof A, on V and isdefined by (v,g) -w=gw+ v for (v,9) €A, we V.

If (E,V,8,5) is a fixed pointed affine space, then E may be identified with ¥
via the mapping 3- Moreover, the action of A, on E defined by (2.1) in Section 2
may be identified via 5- with the affine action defined on ¥ as in the last paragraph.
It follows then that if we utilize the linear action of A, on ¥ ,then V = AE x 4, 14
may be identified with V' as in Section 2; but if we utilize the affine action of 4, on
V,then E= AE x, E = AE x,_V may be identified with E'.

Thusif o : F — V isan afﬁ;le structure mapping, then we may regard it as a
mapping from AE x, V to AE x - V where the affine action is used on the domain
of ¢ and the linear action is used on the range of . Clearly there is a one-to-one
correspondence between affine structure mappings and equivariant mappings from AFE
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into Diff (V) where the action of A, on Diff (V) is defined by

(5.1) [(v,9) - f)(2) = gf(g” (z - v))

for (v,9) € 4, f € Diff (V) ,and z € V. This correspondence is the usual one
whereby ¢ corresponds to o iff

G2 | p(lu,z]) = [, §(u)(2)]

forall ue AE, z€ V.

By analogy with tensors we require that whenever o : E — V is a fiber-preserving
diffeomorphism and X is a vector fieldon M ,then Vo is a fiber-preserving smooth
mapping. Comparison with Definition 4.2 leads us to define V¢ to be the fiber-
preserving smooth mapping from E to V which satisfies the identity

(5.3 (Vo) ([u,z]) = [4,(D,P)(X)]

where u € AE, z € V,and X is the horizontal lift of X
defined by the usual formula:

y 10 u. Here D¢ is

x(u

549 (D$)(Y) = (d, ) (horY)

for ue AE, Y € T,AE . Asbefore hor (Y) denotes the horizontal component of ¥
(see [10]). :

Clearly there are a number of conditions which must be met in order for the above
definitions to be well-defined and for the various maps to be smooth, but one establishes
these conditions by analogy with the corresponding results for V2( E, V) . The infinite
dimensional vector space M,(V) of all smooth maps from ¥ to ¥ plays the same
role in this formulation as does VE(E, V) in the discussion in Section 4. The results
need only minor modification and the details are left to the reader.

The problem of differentiating affine structure mappings is thus reduced to finding a
formula for D$ . We have the usual formula

5.35) Dp=dp+w-§

in the present case. Thus we need only clarify how the Lic algebra o, of A, acts on
the space M, (V) of smooth mappings from ¥ to ¥ . Asusual, for & = (9,3) € a,
choose a one-parameter group a(t) = (v(t),g(?)) in A, such that %(0) =g and
define (@ - f)(z) = £[a(t) - f1(2)],o foreach f € M, (V) and z € V. We sce
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that

(5,9 - 11(2) = 2(6() f(o(D (&~ (D) g
= 3£() + d,F(~57 — 9)
= 9/(2) - d;f(5z+ D)
= /() (4,5 2).

These remarks prove the general result:

THEOREM 5.1. Assume that ¢ : E — V is any affinc structure mapping and that
¢ : AE — Diff (V) is its coresponding equivariant mapping. For w € AE and
X € T,AE, (D,)(X) is the smooth mapping from V to V given by

(D,@)(X)(2) =(d,P)(X) () + w (X)) P(u)(z)
— d(¢(u))(w(X) - )

forall z e V. . -

An interesting subsct of the set of all affine structure maps from a fiber bundle E into
avectorbundle V is that set of maps ¢ : E — V such that golEp is an affine mapping
for each p € M . Observe that p belongs to this class of maps iff its corresponding
equivariant mapping ¢ : AE — Diff (V) actually carries AE into the set Aff (V)
of all affine mappings from ¥ to ¥ . Since Aff(V) is a finite dimensional Lie group
one expects such structure functions to be more tractable. Indeed if ¢ : AE — Aff (V)
is equivariant, then we may define maps ¢, : AE — G{( V) and ¢r: AE - V by
first defining @r(u) = @(u)(?) where b is the zero vector in ¥ and then defining
@, by ¢, = ¢ — ¢p. Thus $ = ¢, + $; may be decomposed into a «linear» and
«translational» part.

If w is a connection on AE then w has its values in a, = gé(n,R) & R™ and
consequently we have that w, (X) = w (X) + wp(X) where u € AE, X € T,AE
and w (X) € g€(n,R), wr(X) € R". Since we have identified ¥ with R" these
definitions give us a way of decomposing the covariant derivative of any equivariant
mapping from AFE into Aff (V).

THEOREM 5.2. If { : AE — Aff (V) is equivariant, then D = D@, + Dy where

(5.62) Doy =dpp + [wy, 0]

(5.6b) Doy = dpy + wy@p — Prwy -
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Proof. Tt follows from Theorem 5.1 that

D,o(X)(2) =(d,@)(X)(2) + w,(X)p(u)(2)
= d(P(W)(w(X) - x)
for ue AE, X € T ,AE, z € V . Now P(u) = ¢, (u) + 9(u)(d) and consequently
d (@(u)) = d (p,(u)) = §,(u) since @L(u) is a linearmap from ¥ to ¥ . Thus
(D,@)(X) =(d,9)(X) + w (X)@(u)
= P (W) (w (X)) + wp (X))
=(d, 9 )(X) + (d, o) (X)
+w (X))@ (u) + w(X)pr(u)
- @L(u)(wL(X)) - @L(U)WT(X)
=(d, o) (X) + [wy (X)), o ()]
+ (duﬂbr)(x) + WL(X)‘ﬁT(U)
- Q’L(u)wT(X) .
To conclude the proof of the theorem we must show that Dy, = dp; + [w;,$,] and

that D@y = dpp + wyp — @pwy . To establish these formula we first determine how
¢, and @, transform under change of frame. We have that

P(ua)(z) = ¢, (ua)(z) + p(ua)(d)
and

P(ua)(z) = [a7" - p(u)1(2)
=g 1o (w)(gz + v) + ¢ P(u) (D)
= 9719 (w)(g2) + 971 %, (W (V) + g7 p(u)(B)

for u € AE, a=(v,9) € A,, T € V. Thus

(5.72) P, (ua)(z) = 9719, (u)(gT)

(5.7b) or(ua) = g7 opu) + 7' @, (uw)(v)
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for u € AE, a = (v,9) € A,, = € V. Now clearly it follows from (5.7a) that
D¢, = dp, + [wy,p,] . Because of the coupling of $,. and ; in (5.7b) the formula
(5.6b) is not so obvious a consequence of (5.7). To obtain (5.6b) first observe that
(D,@)Y(X)(0) =(d, @) (X) (D) + w,(X)($(u)(8))
= ¢ (W) (w(X)(3))
is a consequence of Theorem 5.1 and the fact that d,($(u)) = @, (u) . But w(X)(3) =
wr(X) and $(u)(3) = Gp(u) imply
(Dy$)(X)(0) =evy((d,0) (X)) + w (X)(Pp(w))
— ¢ () (wp(X))
=d,(ev, 0 $)(X) +w,(X)(pp(u))
— ¢ (W) (wp(X))
=(d, @) (X) + w (X)) (Dp(u))
— ¢ (u)(wp(X)) .
On the other hand
(D,P)(X)(0) = (d,p) (horX) ()
= evy(d,p(horX)) -
= d,(ev; 0 ) (horX)
= (D,or)(X) .

Thus (D,or)(X) = (D,0)(X)(8) = (d,0p)(X) + w (X)) pp(u) — @ (w)wp( X)
and the theorem follows. n

If & is adifference function ficldon E x E with valuesin V , then $ isan equivari-
ant mapping from AE into V?(E, V) . It follows that there is an equivariant mapping
¢ from AE into M (E, V) such that

5w (1,6 = P(uw) (&) = p(w)(n)

forall u € AE, n,¢é € E . If,in fact, we identify E with ¥ as we have been doing in
this section, then $ maps AFE into Diff (V) . The mapping ¢ may or may not carry
AE into Aff(V), butifit docs then we sec that

S(W(m,8) = (&) — & (u)(n)
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forall u € AE, n,6 € E= V. Thus § never picks up the translational features of
@ and, of course, this shows up in the dynamics of both § and §. In fact, it follows
immediately that

(D BY(X)(n,8) = (Dué;,)(x)(f) —(D,&.)(m

and since Dg; = dp; + [w;, ;] depends only on the linear part of the connection w
we see that the covariant derivative of 3 essentially ignores the fact that we are working
on the affine frame bundle rather than the linear frame bundle. We find that

D8 = (D"¢p,) om, — (DY) om,

where we use w, instead of w; and where w, is the unique connection which agrees
with w on LM C AE but which reduces to LM . The point of these remarks is that
it is not clear at this point whether the appropriate arena for a unified theory of gravity
and electromagnetism should be the space of triples (g, §,0) or the space of triples
(g, 9,0) . If the theory demands that translational features play an important role then
perhaps the latter space would be more appropriate.

Finally, we wish to discuss briefly the «components» of a difference function field 6 .
Recall that if ¢ is a tensor field of type ({) on a manifold M , then the corresponding
equivariant mapping £ : LM — TTR™ picks out the components of ¢. In fact for a
givenframe u € LM, u = (p,¢;) ,oneexpresses t = t;"',',',j-'.(eil& e, ®e1®---®el)
and then t(u) = t;‘l';.( T, ® ®r ® v @-.-®r/) . Thus {(u) selects the compo-
nents of t in the frame u . In the present theory a difference function field is a section
of an infinite dimensional bundle and thus, strictly speaking, has no components. On
the other hand we regard 5(u) as representing the «components» of & in the affine
frame u . In the case when 3( u) = ¢(u) om, — p(u) om, for some equivariant map-
ping $ from AE into Aff(V), the difference function field § becomes linear and
the components of § become meaningful. If {r,} is the standard basis of ¥, then
@, (u)(r,) = pi(u)r, and we regard {pf(u)} as being the components of the affine
structure mapping ¢ in the frame u. By analogy with the case of tensors the compo-
nents of § in the frame u are given by 5(u) = ¢rlw)yomy — @, (uw)om =@, (u)dy
where 6y is the standard difference function on the vector space v, bp(z, ) =y—=x
for z,ye V. 1f EJ’ is the matrix with 1 in the i-th row, j-th column and O elscwhere

B(u) = pi(u)(E! ® 6y) .

We regard {E! ® 8y} asabasisand {pj(u)} asthe components of § in the frame u
relative to this basis. The components {p}(u)} transform like atensor of type (1) forif
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# = ua isthe frame gotten by transforming u by a = (v, g) ,then $; (%) = a™ '@, (w)
and

pL(® = g7' @y (w)g
or
P(0) = g7' @ (w)g
or
P3(®) = (g7 () gj.

Moreover, Db = (D@,) 6y and by Theorem 5.2 Db = (dpp, + [wp, D) 65 . Thusif
s is alocal gauge in AE and ¢j-(p) = go}(s(p)) , then ‘

) ) I —i
V#E} = 6‘@’} + AA:W’)' - Auf?l

where ALE! = w;(d,s(8,)) .

6. REMARKS ABOUT AFFINE GEOMETRY IN PHYSICS

In this section we briefly discuss some examples which illustrate more specifically
how our formalism relates to that used in certain already-developed applications of affine
geometry.

We take the view that in most physical theories the concept of energy-momentum may
be taken to be a primitive concept, in the sense that it is not built up from more basic
concepts yet practically every physical theory requires its consideration. Moreover, in
those theories in which charged particles play a role it appears that the concept of energy-
momentum should be an affine rather than vector concept. In physical terms this means
that observers in such theories must distinguish between the energy-momenta of charged
particles and of uncharged particles and that one way of accounting for the differences is
to provide for a shift of origin in energy-momentum «space». This idea was expressed
explicitly for the first time in the work of Norris and his collaborators (see [9] and [13]).

From this point of view one postulates the existence of an affine bundle IT over
a given space-time manifold M with the property that for p € M the fiber II, of
IT over p represents all possible energy-momentum configurations at p. This is fully
analogous to the fact that in Lagrangian mechanics the tangent bundle of a configuration
space Q@ is avector bundle over () whose fiberat ¢ € Q represents all possible gener-
alized velocity configurations at ¢ . Unlike the Lagrangian mechanics case, however, it
is our contention that in the case of charged particle dynamics in M one should choose
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a formulation which permits one to consider differing choices of zero energy-momenta.
It is argued in [9] that the presence of an electromagnetic field produces a shift in the
energy-momenta of charged particles which then redefines what it means for a charged
particle to have zero energy-momentum. Moreover, it is argued in [13] that in an appro-
priate «affine gauge» the electromagnetic field itself may be viewed as arising from a
field which locally defines a choice of zero energy-momentum. Thus we propose that in
any context where charged particle dynamics is important the notion of observer itself
should incorporate the following data:

(1) a world-line in space-time,

(2) areference frame «moving» smoothly along the world line, and

(3) achoice of zero energy-momentum at each point of the world line.

In other words we postulate that the notion of an observer is characterized by defining
an ordered pair (,0) where 4 is a curve in the linear frame bundle LM of M and
6 is a section of that part of the energy-momentum affine bundle IT which lies over the
world-line 7 o v of the observer (7 is the projection of LM onto M ).

It should be noted that the formalism can be utilized in many situations depending
on which vector bundle V serves as the model on which IT is defined. One could
formulate models where V' could be TM,T*M , a spinor bundle over M , or perhaps
some relatively complicated spliced bundle depending on the specific physical theory
being investigated. In some of these cases it will be meaningful to consider energy-
momentum configurations of sections of the relevant vector bundie.

Given a zero of energy-momentum 6 of Tl Iwov it admits an extension to I1 (recall
that 7 o~y defines a submanifold of M since it is a time-like world-line) and if we call
such an extension @, then the pointed bundle (IT,#8) can be identified via Proposition
3.3 with an associated bundle E of the affine frame bundle AIT of Il. Under this
identification @ is identified with the zero section of E. If  is a different zero of
encrgy-momentum of T IW7 then (IT,8) is identified with another associated bundle
E of ATI . Each of these gives a valid description of the zero of the energy-momentum
of an observer and they are related via translational gauge freedom in AIT . Forexample,
in the special case that V = TM the observer (~,8) defines a curve in the subbundle

LgM = {(p,¢;,0(p)) |(p,e;) € LM}
of AM while (7,8) defines acurve in
LM = {(p,e;,8(p)) | (p, &) € LM}.
Obviously these lie in two different copies of LM inside the affine frame bundle AM

of M, but there is a well-defined gauge transformation which takes either to the other
in AM.
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It is not clear how far this formalism should be pushed. One could take the point of
view that in any theory in which energy-momentum is an affine concept, the Hamilto-
nian of a physical system should be defined on a momentum space whose elements are
affine QUantities rather than vector quantities. If so, then the Hamiltonian H would be
a function from the momentum bundle IT into R where Il is not generally a vec-
tor bundle but rather is an affine bundle modeled on the vector bundle 7*M . As an
example of how this would work consider first a free (uncharged) particle moving in
flat Minkowski spacetime M, . Let H, be the Hamiltonian of this particle. Then

n .
Ho(q,D) = _25‘(5, 6(g)) where ¢ € My, b € I1, 6 is the difference function field

on IT and é_ lrt:prcscnts the zero energy-momentum of the free particle. If we identify
(IT, @) with the bundle associated to AM,, as inthe last paragraph, we see that (I1,0)
may be identified with (T*M,,0) where 0 is the zero section of T*M,, . Moreover, §
may be identified with the trivial difference function (&y),(p,,p,) = p; — p, . Assume
now that A is a globally defined 4-potential of some electromagnetic field on M, . If
we define H(q,p) = Ho(g,6,(p,A(g))) . then H is the Hamiltonian of a charged
particle in M, . Thus A defines a new zero of energy-momentum and the charged par-
ticle Hamiltonian is simply the free Hamiltonian modified by choosing a new zero of
energy-momentum at each point. The old physical vacuum is redefined to obtain a new
vacuum via an electromagnetic field. These ideas are discussed fully in [9] where phys-
ical arguments are given to support the use of affine structures such as these in charged
particle dynamics.

In addition to this example relating to charged particle dynamics there are tantalizing
hints that affine geometry is implicitly utilized elsewhere in physics. Norris discussed
Newtonian Mechanics within such a context in [13]. A more trivial but intri guing exam-
ple occurs in relativistic electromagnetism. At each point ¢ of Minkowski space M,

let C, denote the past null light cone at ¢. Let C = |J C, and define § on C by
gEM,

Sq(z,y) =7 - ; where z = (xo,_:f), y= (yo,'ﬁ) are elements of Cq C M, . Then
§ is a difference function field on C modelled on the trivial vector bundle with standard
fiber R? . Define a section  of C by & C,) = ¢. Givenacurrent J on M, the
retarded potential associated with J is defined at z € M,, by

e
A (2) = /’J.-(zo ~ly|, z+v) (—_.—y—)
R lyl

Here d3y denotes Lebesgue measure on R? and f:V- is the Lorentz invariant measure
4 & T

on the cone C, induced by the mapping v — (20 — le ()], . (¥)) where p, :
C, — R? is defined by p.(y) = v + z . Note that the mapping ¢, has the property
that it defines the difference function field 6_, i.e., 6.(y,2) = ¢, (y) — ¢, (2) for
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¥,z € C,. Observe also that £ — g, is a family of fiber diffeomorphisms related to
the affine structure & of the affine bundle C as in Section 5. It would be interesting to
reformulate the theory of retarded and advanced potentials in terms of affine geometrical
concepts and to investigate whether such a formulation yields new physical insight into
this somewhat murky area. Such an investigation is beyond the scope of this paper and
probably needs the attention of a physicist.
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