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Abstract. ClearlyagivenmanifoldM maysupportmorethan onemetrictensorand
generallyonemayselectaparticular metricon M via a variationalprocedurede-
fined on theclassofall metricson M. Obviouslytheclassofall metricson M is a
subsetofthesetofall sectionsofthevectorbundle7~M and thusonehasa rigorous
frameworkfor anytheorywhichhasas its goal theselectionofa metricin this way
(inparticular, generalrelativity is sucha theory).It is ourpuxposeto developsucha
frameworkfor affinegeometry.Wedo not considerspecificproceduresto selectan
affinegeometryanalogousto theselectionofametric via the variationofsomeLa-
grangian, but weestablishthearenawheresuchprocedureswouldbemeaningful.In
thecaseofRiemanniangeometry,this arenawouldbethesetofall sectionsofthefi-
nitedimensionalvectorbundleT~M andinthis contextit is importantthatcovariant
derivativesofsuchsectionsareagainsectionsofthesamebundle. Moreover,theco-
variantderivativeofa givenmetricisrelativelysimpleasit arisesfromalinearaction
of GE(n, K) ona typicalfiber of2~M. In thecaseof affinegeometrywefind that
theappropriatearenais thesetofall sectionsof an infinite dimensionalvectorbun-
die ~V(E, V, t5) . Moreover,sincethegroupAff(~5)relating<c-changeof basis.scis not
compactandactson thefiber ofthis infinite dimensionalbundle,it turnsOut that the
groupactionis notgenerallycontinuouswhenoneusesthe WhitneyC°°topologyon
a typicalfiber; ratheronemustusetheSchwartzC°°-topologywidelyusedin thethe-
óryofdistributionsto obtaina differentiableaction. Moreover,theactionof thegroup
onatypicalfiberis notlinearsothat theusualformulasfor covariantderivativesmust
bemodified.Aninterestingconsequenceofour investigationis that thevectorbundle
V canbeextendedandtheactionofthegroupalso extendedsothat thenonlinearity
is only a<c-secondordernonlinearity.~,i.e., formulasfor the covariantderivativeofa
sectioninvolveonly linear termsandbilinear terms(seeEquation 4.2). In addition
to this feature,formulasfor covariantderivativesof affinegeometriesaredeveloped
which arefully analogousto thosefor covariantderivativesof Riemannianmetrics
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(seeTheorem4.2). Symmetry-breakingpropertiesassociatedwith specialclassesof
affinestructuresareobtainedandparallelsaredrawn with themetriccase(recallthata
metricreducesthelinearframebundleto thebundleoforthonormalframes,symmetry
is brokenfrom thegenerallineargroupto the orthogonalgroup). In thelast section
ofthepaperweshowhowour formalism relatesto certainalready-developedappli-
cationsof affinegeometryto chargedparticledynamicsworkedoutin moredetailby
Norris andhiscollaborators.

1. INTRODUCTION

It isthepurposeof thispaperto introducea formalismwhichis adequateto undertake

a developmentof affine geometryvia techniquesanalogousto certainof thoseusedin
Riemanniangeometry. Although affine geometryhasreceivedonly a fractionof the

attentionbestoweduponits richercounterpartRiemanniangeometry,it is the casethat

a corpusof materialexistsduelargelyto Cartan,therudimentsof which maybefound
in textbook form in [10] and[11]. Theprincipalobjectof study in the presentwork is

theclassof all affine geometriesdefinedonagivenaffinebundle.To our knowledgethe
conceptof anaffine bundlehasonly recentlybeencastinto a rigorousform. The idea
wasrigorouslytreatedby CrampinandThompsonin [2] who in turn attributetheformal

definition to Goldschmidt[5]. Thereis no apparentoverlapof our results with either

of thesepapers.Evenour definition differs slightly from theirs,butour versionseems
betteradaptedto our purposeof studyingthe classof all affine geometrieson a given
affine bundle.

It shouldbenotedthatthephysicsliteratureaboundswith applicationsof affinegeom-

etry, especiallyto theso-calledmetric-affinetheoriesof extendedgravitation[7]. These
theorieswereinitiated for the most partin work of Cartan [1], but havebeendevel-
opedby a numberof authorssincethat time. Someof this work utilizes variousclasses
of affine geometriesin an attemptto understandinteractionsbetweenfields definedby

varioustypesof elementaryparticlesandgravitationalfields.Thepresentpaperderives
muchof its motivationfromtheaffine geometricalunificationof gravity andelectromag-

netismachievedin [9] and [13]. Thisbeingthecase,certainof our ideasareformulated
within a contextwhichfacilitatestheir applicationto thesephysicaltheories.In particu-
lar, practicallyall of ourresultscouldbeformulatedwithin theclassof all affinebundles

without referenceto whatwe call-pointedalfinebundles,but wehavechosento carry
alongaglobal sectionof eachof our affinebundlesandkeeptrackof how thesesections
relateto our variousconstructions,especiallysincesuchdistinguishedsectionsplay a

centralrole in thephysicaltheoriesdevelopedin [9] and [13].
Ontheotherhand,weemphasizethatour resultsarequite independentof thesephys-

ical theoriesand webelievethey havemathematicalmerit apartfrom anyapplication.
Thereare a numberof ways in which thedevelopmentof affine geometrydiffers from
its Riemanniancounterpart.Themost significantdeparturesseemrelatedultimatelyto
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certainnonlinearfeaturesof thetheory. Thesenonlinearfeaturesforce us away from
thefinite dimensionaltechniqueswhichworkso well whenonestudiesRiemanniange-
ometry andrequire thedevelopmentof infinite dimensionaltechniques.Nevertheless,
parallelsbetweenthetwo theoriesexist,evenif only ataprimitive level. It is ouraim to

exposethis parallelismbetweenthetwo theories.In particular,someof thesesomewhat
primitive ideasof metricgeometrywhich will find a counterpartinaffine geometryare

asfollows:

(1) if g is an arbitrarymetricon amanifold M thenthereis a vectorbundle T2
0M

suchthat g is a sectionof T
2

0M;
(2) the setof all sectionsg of thevectorbundle I’2°M are in bijectivecorrespon-

dencewith equivariantmaps ~ from theframebundleLM of M intothevectorspace

T
2

0Rm(m= dim M);
(3) theequivariantmapping ~ : LM —+ T~Rmwhicharisesfrom ametric g carries

LM ontoanorbit of a metric g~,on thevectorspaceR~andthe typeof themetric g
is determinedby thetypeof ~ , e.g., g ispositivedefiniteif g~is and g is Lorentzian

~ is;
(4) a metric g reducestheframe bundle LM to the subbundleof g-orthononnal

framesof LM and,moreover,anyconnectionw on LM reducesto this subbundleif

D’~= 0;
(5) thereareinterestingformulaswhichinvolve thecovariantderivativeof ametric,

in particularif X, Y, Z arevectorfields on M then

(V~g)(X,Y) = V~(g(X,Y))—g(V~X,Y)—g(X,V~Y).

Althoughthesepropertiesadmittedlycaptureonlythegrossestfeaturesof metricge-

ometry,they do providea frameworkwithin whichdifferent metricgeometriesmaybe
studied. Forexample,in a theoryin which metricgeometryis itself a variable(such
asgeneralrelativity) onerequiresan arenain which onecanposea procedure(suchas

thevariationalprinciple)for choosingageometrywith specifiedproperties.Heretofore

suchan arenahasnot existedfor affine geometries.The presentpaperaddressesthis
problemby developingaffine ideaswhichparallelthe metricproperties(l)—(5) above.

More specificallyour principal objectof concernis what we call an affine bundle

(E, V, 5) . Here E is a fiber bundle with basespacea manifold M, V is a vector
bundlealsohaving M as basespace,and S is a function whosevalueat p E M is a

differencefunctionfrom E~x to V~.We referto S as a differencefunction field
andwe show that S plays a role for affine geometryanalogousto the role g enjoys
formetric geometry.Wenow briefly discussthe variousaffine counterpartsto (l)—(5)
above.Let (E, V, 5) bean affinebundle fixed oncefor all.

(1) For pE M the set V(E~,V~)of all differencefunctions from E~x E~to
isnot avectorspacewith respectto pointwiseoperations.Wefind avectorspace,which
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wedenoteby V( E~,Vi,) , that representsthe Klinearclosure>>of V( E~,V,,) . Fortech-

nicalreasonsthis vectorspaceisfurtherenlargedtoavectorspace~2 (E~,V~)whichis

closedunderexteriordifferentiation.Naturaltopologiesarefoundrelativeto whichboth

1)(E~,V~)and V2(E~,Vi,) becomeFrdchetspaces.Both V(E, V) = U 1)(E~,V~)
9EM

and V2(E,V) := U V2(E~,V~)areinfinite dimensionalvectorbundlesand differ-
pEM

encefunctionfields aresectionsof bothbundles.It is clearthat V( E,V) playstherole
of T

2
0M in this theoryandthat thenonlinearfeaturesforce us into an infinite dimen-

sionalfrainework.

(2) Forthegivenaffinebundles (E, V, 5) onecanbuild a finite-dimensionalaffine
frame bundle AE having as structuregroup the group A~of all affine transforma-

tions of a typical fiber of E. If E and t’ are standardfibers of E and V respec-
tively then thereis a bijection from the set of all sectionsof 1)2(E,V) onto the set

of all 1)2(E, c’)-valued equivariantmapsdefinedon AE. ClearlytheFréchetspace

~2 ( E, V’) playsa roleanalogousto T
2

0Rm in ametrictheory.
(3) If cv is a differencefunctionfield on E to V (whichmayormaynotcoincide

with 5) and & is its contspondingequivariantmappingfrom AE into 1)2 ( E 1/),

then & maymapAE ontoanorbitofsome5<, eV(E,V’) c 1)2(E,c’) . If so,then 5<,
in somesensedefinesthetypeof cv but in thisaffinetheorythereareno canonicalforms

for S< in contrastto themetriccase.Thisisdue in partto thefactthat S~> is in general
nonlinear. Onemay speculatewhethersome sort of invariantsmight be formulatedin
specialcasesclassifyingthe various 5<, by theirjets. We havenot attemptedsucha
classificationbutwehaveinvestigatedthose & which mapontotheorbit of an <<affine

differencefunction>> from E x E to V. The setof <~affineelements>>of V( E, V) is

a finite-dimensionalmanifold andthusprovidesa tractablesubsetof V( .~, ~‘) which
maybeutilized asamodelfor developmentin thegeneralcase.

(4) Thereis a formalism developedfor generalprincipalfiber bundleswhich gives

a mechanismfor reducinga bundle.Thismechanismworksfor the affine frame bundle
AE just as it does for frame bundles.Onedifferencewhich occursin the affine case

is that truereductionmayormaynotoccurdependingon the isotropysubgroupof the
elementS<, E V( E, ~‘) discussedin (3).

(5) We obtain a numberof formulas, someof which parallel similar formulasfor

covariantderivativesof metrics.Thereisalargervarietyof expressionsfor thecovariant
derivativeof adifferencefunctionfield thanfor ametricfield simplybecausethebundles
involvedare infinite dimensional.Perhapsthe simplestof theseresultsstatesthat if a
is a differencefunctionfield from E to V and X is a vectorfield on M then

(Vxa)(0jL) = Vx(Cv(ajL)) — dcv(Vxo,Vxp)

where a and~ aresectionsof E.
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Ratherthandescribeour results inmoredetail,wepreferinsteadto indicatebriefly

onereasonwefind it appropriateto studysuchstructures.In [13],L.K. Norrishasshown

how to obtaina geometricalunificationof electromagnetismand gravity. In this paper
NorrisutilizesaffinegeometryinsteadofthevariouslinearmodificationsofRiemannian

geometrywhich form thebasisof mostattemptsto obtain sucha unification. A basic
ideaof Norris’ work is that oneshould havea model for classicalparticleswhich al-
lowsfor all possibleconfigurationsof theenergy-momentumof aparticlein additionto

theusualconfigurationsof positionandvelocity. If M is a manifoldwhich represents

all possiblepositionsof a particle, then thevectorspaceT~Mrepresentsall possible
velocity vectorsat p E M. Norrispostulatesan affine spacefir, whoseelementsare

energy-momentumaffine vectorsand whichrepresentsthesetof all energy-momentum
configurationsof a particleat p. He alsoshowsthat the affine propertiesof the ge-
ometry are anessentialfeatureof the modeltheory. His ideasare extendedfurther in
[9] in which certainassumptionsare requiredof theaffine geometrybutwhich are only

partially understood.Forexample,the formula

D(5(Ir,&) = 5<,(Dfr,D&)

is utilized in thepaperbut it is notclearwhat restrictionthis placeson theconnection.
Oneof the aimsof thepresentpaperis to providea mathematicalframeworkrelative
to which thebasicassumptionsin thephysicaltheorydevelopedin [9] and[13] maybe

givena mathematicallyrigorousformulation.
The paperconsistsof six sections. The first sectiondevelopsthe resultswe need

aboutaffine spaces.In it we also definethevariousfunction spaceswhich are needed
in therestof thepaperas well as the relevantactionsof theLie groupof affine trans-
formationsand its correspondingLie algebraon thesefunction spaces.In thesecond

sectionwe introducetherigorousdefinitionof anaffine bundlealongwith theattendant
infinite dimensionalvectorbundlesof interest,we discussthe affine framebundleof

anaffine bundle,and weestablishthatstandardconstructionsof associatedbundlesare
valid in this infinite dimensionalsetting. In thissectionwe alsoestablishtheone-to-one

correspondencebetweensectionsof ~2 ( E, V) and equivariantmapsfrom AE into

V2( E, V) . In thethird sectionwedefinetheexteriorcovariantderivativeofequivariant
mapsfrom AE to ~2 ( E,V). Weshowhowto usethisto definethederivativeof sec-

tions of V2(E,V) . Weshowhowtheseformulassimplify in thespecialcasewhenthe
differencefunctionfield beingdifferentiatedis <<affinely related~to thedifferencefunc-
tion field which definesthe structureon AE. Wealso discussthe symmetry-breaking
propertiesof differencefunctionfields in this setting. In the fifth sectionof the paper

weconsideran alternativewayof formulatingour results.Insteadof consideringdiffer-
encefunction fields we considerfunctions ç&

1, : —p which dependsmoothlyon

p E M. Thesemaps andtheir covariantderivativesseemto encodeboth information
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foundin thecorrespondingdifferencefunctionfield 5~,,aswell asinformationobtained
if onechoosesanarbitrary sectiona of E which wethink of as achoiceof origin in

eachaffine spaceE~,p E M. Covariantderivativesof ~ havetermswhichcancelout
whenonepassesto thecovariantderivativeof thecorrespondingdifferencefunctionfield

5~,.Thissuggeststhattheseobjectsmaybemoreusefulinphysicssinceunwantedterms
which appearin thenew formalismcouldalwaysbe setto zero if they arenotneeded

whereastheyarenotevenpresentin thedifferencefunctionformalism. In thesixth and
final sectionof thepaperwebriefly relateour formalism to certainalready-developed

applicationsof affine geometryreferredto above.

The authoracknowledgeshisdebtto L. K. Norrisnotonlyfor the initial inspiration
for thepaperbutalsoforenlighteningconversationsaboutaffine geometryandits appli-

cationsto physics.Thanksare alsodueto theparticipantsof theMathematicalPhysics
seminarat NCSUfor suggestionswhich led to improvementsin thetext

Finally, the authorwishesto expresshis appreciationto therefereeof thepaper.He

not only provideda referencewhich eliminateda long uninterestingappendixto the
paper,buthealsoprovidedcommentswhich improvedthe paperasawhole andwhich

led to a greatlyimprovedversionof Section3.

2. FUNCTIONSPACESASSOCIATEDWITH AFFINE GEOMETRY

In this sectionof thepaperwedevelopsomeratherbasicconceptsat theaffinespace
level which will be expandedin later sectionsby imposingthemon eachfiber of an

appropriatelydefinedfiberbundle.
Recall [3] thatanorderedtriple (A, V,5) iscalledanaffinespaceif S is a function

from Ax A to V suchthat

(1) for ~ e A, S(’i,C) = 5(?l,e) + 5(e,c),
(2) for ~ ~ A,thefunction S~: A—’ V definedbyS~(i~)= S(~,i~)isabijection.

If (A, V, 5) isanaffinespace,thenwesaythat S is a differencefunctionon A. The
setof all differencefunctionson A with valuesin V is denotedby V( A, V) . Notice
that generally 2)(A,V) is not a vectorspaceunderpointwisedefinitionsof addition

andscalarmultiplication. On theotherhand,if werelaxoneof theseconditionswedo
obtaina vectorspace.Let V(A, V) denotethe setof all functions a : A x A —~ V
suchthat a( i~,() = cv( i~,~)+ a(~, () for ,~,~, ( eA. Defineoperationson 1)(A, V)

by (cv1+ a2)(ri,() = cv1(~,~)+a2(~,~)and (ccv)(,i,~)= ca(~~,~)for cv1,a2 , cv E

V(A,V), c ER, ,~ E A. The setoffunctions1)(A,V) isthenavectorspaceand
containsV( A,V). We will oftenfind it convenientto work with functionsfrom A to

V ratherthanfunctionsfrom AxA to V. Denoteby M (A,V) thesetof all functions
from A to V andnotice that M(A, V) is also a vectorspaceunderthe pointwise
operationsdefinedby (~i + ~2)(e) = qS1(~) + ~2(e), (cq~)(e) = c~(e) where
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4)1, 4)~4) E M(A, V), c E R, ~ E A. Considerthefunction cv* : )vl(A, V) —~

V(A, V) definedby a*( 4’) ( n,0 = 4)(0 — 4)( ,j) for 4) E .M( A, V), , 17, ~ E A. It is
obviousthat cv*( 4)) E ))(A,V) for each 4) andthat cv* is linear. Moreover,its kernel
consistsonlyof constantmaps.Thuswehave:

PRoPosmON2.1. The sequence

0-4 V-~’.M(A,V)~V(A,V)—‘0

is a short exactsequence.Moreover,if 8(A, V) denotesthe setofall bijectionsfrom

A onto V. then cvt(13(A,V)) = V(A,V). .

Weleavethedetailstothereaderbutobservethat oneconsequenceof theproposition
is theobviousbut importantfactthat two bijections4) and 4.’ from A to V giveriseto

thesamedifferencefunction S &( 4)) = cvt( i,b) if their difference4)— 4~isconstant.
In subsequentsectionswewill berequiredto considermanifoldstructureson A and

V. If we assumeV is finite dimensional,then eachchoiceof a basisin V defines
an isomorphismfrom V onto R”. Theset of all suchisomorphismsis an atlas for

V andit is easyto seethat all elementsof Vt aresmoothrelativeto thecorresponding
differentiablestructureA. Actuallyit iseasyto showthatif A isanyatlason V having

thepropertythatall elementsof Vt aresmoothrelativeto A thenA c A. Thusthere
is oneandonly onedifferentiablestructureon V with respectto which all elements
of Vt are smooth. If we are given a specific differencefunction S : A x A —, V
anda point ~ E A, thenthereis oneand only onedifferentiablestructureon A for
which 5~: A —. V is adiffeomorphism.Moreover,if 5~is adiffeomorphismforsome

~ E A , thenclearly it is adiffeomorphismfor all eE A.
Assumethenthat we havea fixed differencefunction 5<, from Ax A onto a finite

dimensionalvectorspace V and that this function fixes the manifold structureon A
onceandfor all. Relativeto this choice let M

8(A,V), V,(A,V), 138(A,V) ,and

V,(A, V) denotetheset of all smoothfunctions in thesets M(A, V), V(A,V),
13(A, V), and 2.)(A, V) respectively. If a denotesthe restrictionof cv* to

(A,V), wehavetheobvious:

COROLLARY 2.2. Thesequence -

0 -+V-~M8(A,V)~-’V3(A,V)-40

is a shortexactsequenceand cv(133(A,V)) c V3(A,V) .

We haveenlargedthe space V3(A,V) to V8(A,V) because,in subsequentsec-
tions,we will find it convenientto know that certaingroupactionson V8( A, V) actu-
ally ariseasrestrictionsof alinearactionon thevectorspace~ A, V) . Thuswethink
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of V8(A,V) as a <<linear closure*of V3(A,V) . It turnsout that this <<linear closure~

of V9(A,V) is also too restrictive. We will requirealso an enlargedspacewhich is
closedunderdifferentiation,i.e., if a: A x A —, V is in thespacewealsorequirethat

d(,~)cv bein thespacefor (17,0 E A x A. Obviouslythislatterrequirementmayonly
bemadesubjectto someidentificationswhich wenow clarify.

If cv : Ax A —p V isasmoothfunctionthen d(,~ a is afunctionfrom ,~ (Ax A)

into T~~E)V. Since V isavectorspaceweknowthat ~ V maybeidentifiedwith

V ,thus d(~)abecomesa vector-valued1-form on A x A. On theotherhand,our
differentiablestructureon A is itself inheritedfrom thefixed differencefunction 5<,,

and,for anyfixed ~<, ~ A, S~:= : A —~ V is a diffeomorphism.It follows that

(d,7St)
1o S~is afunctionfrom A to T~Aandthus

((d,~S~)’o Se,)) x ((~5)_1 oS)

isafunctionfromAxA to T,
7AxT~A.Ifweidentify d(,lt)cv : T~AxT~A—‘ V with

thefunction d(,~)a:= d(,,~)cvo [((d,~S~)—’o x ((d~S~)’o Se)] thenwemay
regardd(,~cv asa mapfrom Ax A to V. Evenwith this identification cv E 1)3(A,V)
will notguaranteethat d(~,f)ais in V8(A,V) ; thuswe enlargeour spacesothat this
propertyholds in theenlargedspace.

Let V
2(A,V) denotethesetof all smoothfunctions cv: A x A —+ V suchthat for

someorderedpair (4),4)) EM
8(A,V) xM3(A,V)

= 4’(~)—

for all (tj, 0 E A x A. Theneachelementof ‘V3( A,V) is determinedby a single
elementof M8(A, V) while eachelementof V~(A,V) is determinedby anordered
pairof elementsof .M3(A, V) . It is clearthat V~(A,V) is a vectorspaceunderthe

usualpointwiseoperationsanalogousto thoseusedon V3(A,V)
If ~I’~2 : Ax A—’ A arethe projectionsof Ax A onto A, we seethat a fi

1)
2(A,V) impliesthat a= 4)oir

2—4.~oir1andconsequentlyd(,~)cv= df4)od(,,~)7r2_

d~4)o d(~t)1rl. But d(,,t)a= (dtcbo ( d~S~’)° 6~)~ — (d,14 o ( d,~S~)—’o o

which is clearly in V~(A,V) . Thusunderthe identification d(flt)cv = d(,~f)cvabove
weseethata E V~(A,V)impliesthatd(~t)aE 1)~(A,V).Wehaveproven:

PROPOSITION2.3. The vectorspaceof functions 1)~(A,V) contains‘V3( A,V) as a
subspaccandalsohasthepropertythata E ‘V~(A,V) impliesthat a E V~(A,V)
for everypair (~)E A x A.

Eventuallywewill definethe covariantderivativeof equivariantfunctionseachof

which hasas domaina certainprincipal fiber bundlewith structuregroup the group of
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affine transformations. The rangeof thesemaps.is 1)~(A,V). Sincethe covariant
derivativeis definedin termsof theactionof the Lie algebraof thestructuregroupon

the rangeof the mapsbeing differentiated,we mustshow how the Lie algebraof the
groupof affine transformationsactson V~(A,V) . Thisactionis inducedby an action

of thegroupofaffinetransformationson V~(A,V) which in turn is inducedby actions
of this samegroup onbothA and V.

Assumethat (A, V, 5<,) is a fixed affine spaceand recall thata mapping f : A —.

A is an affine mappingif thereexists a linear mapping IL : V —‘ V suchthat

= fL(
5<,(’l,E.)) forall ,~ E A (see[3]). Thesetofalibijectiveaffine

mappingsfrom A to A is denotedby Aff (5<,). This setof mappingsis a groupun-

dercompositionof functionsandthereis ahomomorphismfrom Aff (5<,) onto G~(V)

definedby f —+ IL. It is nothardto showthat thekernelofthis homomorphismis iso-
morphicto V underaddition.Eachchoiceof ~, E A yieldsasplittingofthe sequence

V —.-—~ Aff(S<,) —i Gt(V) andthemapping f —‘ (S~(f(~<,)),fL) is anisomor-
phismfrom Aff (S<,) ontothesemidirectproduct VxG~(V) wherethe operationon

V~G~(V)isdefinedby

(v
1,g1)(v2,g2)= (v1 + g1(v2),g1 92)

for v1,v2 E V, 91~92E G~(V)
Observethat thereare naturalactionsof Aff (5<,) on both A andon V. These

actionsaredefinedby (f, ~)—‘ f(’q) and (f, v) —p fL(v) , respectively(here f E
Aff(5<,), ‘~ E A, v E V). Theseactionsclearly inducean actionof Aff(S<,) on

V,
2(A,V) via (f,a) _~ cv where f cv is definedby

(2.1) (f.a)(17,e)= fL(cv(f(fl),f(0))

for fEAff(5<,), aEV~(A,V),TheEA.

Beèauseof our interestin relatingour resultsto thephysical theorieswhich in part
motivate our work, weareinterestedin understandingthe implicationsof a <<choiceof

origin>> in eachaffine spacewe consider. Sucha choiceof origin .~<, E A provides
us with the identificationof Aff (S<,) with V ‘i G~(V) definedabove.The actionsof
Aff (6<,) onthe spacesA and V relativeto this identificationassumetheform

(2.2a) (v,g) ~7j = 5~’(g(5~ (‘q)) + v)

(2.2b) (v,g) . w g(vi)
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for v E V, w E V, p E C~(V), ‘~ E A. Whenthe actionof Aff (5<,) on V is
written in the form (2.2b) it is naturalto ask whetherit might bemoreappropriateto
utilize anotheractionof Aff (5<,) on V , namelytheonedefinedby

(2.3) (v,g) . to = g(w) + v

where (v,g) E V x G~(V) and w E V.

It turnsoutthat if we use(2.3) insteadof (2.2) in definition (2.1), then V3(A,V)
will notbeinvariant; i.e.,for cv E V3( A, V) and a E Aff (5<,) it neednot follow that

cv E 2)9(A,V). Generally,a E V3(A,V) hasthepropertythat cv(~,11) = 0 for

all t~E A but (a .a)(~,~)maynotvanish.Ontheotherhand,ifweutilize(2.2)in
theactiondefinedby(2.l) weseethat Aff(5<,) . V8(A,V) C V3(A,V) as werequire

below.
Since we are interested in keeping track of the <<choice of origin~ in our affine spaces

andin thesubsequentimplicationsof thischoice,wefind it usefulto formalizethecon-

cept.

DEFINITION 2.1. To saythat (A, V,S~,~<,)is apointedaffinespacemeansthat (A,

5<,) is an affine spaceandthat ~,, E A. The point ~, will be calledthe origin of
the affinespace(A, V, 5<,) . When Aff (5<,) actsona pointedspace(A, V, 5<,, c,,) we
identify Aff (5<,) with V~ G~(V) asaboveandwe identify the actionsof Aff (5<,)

on A, V, and V~(A,V) with the actionsdefinedby (2.1) and (2.2). Finally, when V
is n-dimensional wedenoteAff (5<,) ~‘ Vx C~(V) by A0 and its Lie algebraby

a0~Vxg~(V). •

Finally,toobtaintheactionof theLie algebraon V~(A,V) which werequirebelow,
oneproceedsasusualto differentiatethecorrespondingactionsof A0 on first A and
then on V~(A,V). If t —~ (v(t),g(t)) is a oneparametergroup in A~,then its
correspondingelementina0 is (i~) g(~(t),9(t))l~0. Thustheactionofa0 on

A isdefinedby

(I~,~).~ := ~[(v(t), g(t)) ~

= .. [S~-(g(t)S~(e) + v(1))]I~~

= [~~‘ ~ ¼] (5~~1~5(~) +

Recallthat d,7S~’o S~isthemap weuseto identify A with T~A;thuswehavethat

(2.4) (i~) ~ := S~’(~6~(~)+ iv)
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We now proceedto derive a formulafor the actionof a0 on 1)~(A,V). Let a E

V~(A,V)andlet~,4.’eM3(A,V)suchthatcv=woir2—4~oir1.Ift-+a(t)=
(v(t), g(t)) is a 1-parametergroup in A0 and ~ = ~(0) then

(a.a)(77,~) := ~([o(t) .cv](~i,0)l*,o

= ~[g(t)a(a(t)’ .~ a(tY~~e)]I~=0

= . ~) — . ~5(~)+ d~(—~. ~)— d~b(—a.

= ~ .a(~j,~)— d(fle)cv(a.~, ~

Thus

(2.5) (~.cv)(77,e)=~.a(fl,~)_da(,~)(~..fl,~

Theformulaswehavederivedabovearequitegeneralandthroughouttheremainderof

thepaperwewill beinterestednotonly in thisgeneralcase,but alsoin onespecialcase
which wehavenotyet discussed.Thisspecialcaseis concernednotwith all mapsfrom

A to V butrathertheaffine mapsfrom A to V.

DEFINITION 2.2. An elementcv of V~(A, V) is saidto be affineif thereexistsaffine

maps~,4 E1v13(A,V)suchthatcv W0112 —4.oir1 .Thesetofallaffineelements
of 1)~(A,V) will be denotedby Aff

2(A, V) and the setof all affine elementsof

MØ(A,V) willbedenotedbyAff(A,V)

REMARK. Observethat if cv is an affine elementof V~(A,V) and a E V
3(A,V),

thenit is appropriateto call cv anaffinedifferencefunctionand in this case

(2.6)

for somebijectiveaffine map ~ : A —~ V.

PROPOSmON2.4.Assumethatcv E 1)~(A,V) isaffineandthat = wo ~ — ~ ow1

for ~ E Aff(A, V). ~ ~ and ‘bL are thelinearparLc of~and ~, respectively,
then

(1) cv = (WL ° ° ~) — (4.~° ~ ° ~i) + v0 for some E V,
(2) dcv = dcv = (coLo~2) — (coLo~2) where *~and ~r2amthemapsfrom A x A

to V definedby -

= ~ ~2(77,e)=
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(3) for ?z E a0, ~z= (i),~), ~ a = [~,WL] ~ — [g,4.’Ll ~ ~1 — [WL(~) —

+

F~vofStatement(1) follows from Equation(2.6)andthedefinitionof anaffine map-

ping. Statement(2) follows from the canonicalidentification da = dcv madein the
paragraphimmediatelyprecedingthe statementof Proposition2.3 along with the fact
that if £: V —‘ V islinearthend~1=£ foreachvEV. The proofof statement(3)

is aneasyconsequenceofequation(2.5) andstatements(1) and(2).

Thiscompletesour discussionof the variousfunction spaceswe will needat the

purely affine spacelevel. Our nextsectionwill developtheseideasfurtherat the fiber

bundlelevel.

3. AFFINE BUNDLES, CORRESPONDING PRINCIPAL BUNDLES AND VAR-
IOUS ASSOCIATED BUNDLES

In this sectionwe introducetheconceptof anaffine bundle.We studyits bundleof

affine framesandshowthat the affinebundlemayberecoveredas abundleassociated
totheaffine framebundleandanappropriateactionof A0. This result is usedto obtain

a bijection from the setof all sectionsof an affine bundle (E,V, 5) onto the set of

equivariantmappingsfrom its bundle AE of affine framesinto an appropriateFrdchet
space.

DEFINITION 3.1. Let (E,V,6) beanaffinespaceand M a manifold. Also let (E, V,
5) beanorderedtriple suchthat

(1) (V,M,1r~)is a vectorbundleover M with fiber t~,
(2) (E,M, irE) is a fiberbundleover M with fiber E, and

(3) foreachp E M, (Er, V,,S~)is an affine space.

One says that (E, V,5) is a trivial affine bundle with standardfiber (E,V, ~) if

both (V,M,irv) = (M x c/,M,~~)and (E,M,IFE) = (M x ~,M,1rE) are
trivial fiber bundlesand S~,is given by S~((p,~),(p, i1)) = 6(~,i)) for every p E
M, ~, i~c E. More generally, (E, V,5) is an affine bundle with standardfiber

(E, ~, ~) if eachpoint of M is containedin an opensubset U C M suchthat
(ir~

1(U),ir~’(U),(5IU)) isisomorphictothetrivialaffinebundle(UxE, Ux V, So

(ir
2 x ir2)) definedabove.Herethe word isomorphismis understood in thetechnical

senseof Definition 3.2below.

DEFINITION 3.2. Two affine bundles (E1, V1 ,S~)and (E2,V2 , ~2) overthesamebase
manifold M areisomorphicif thereexistsa pairof maps (FE, ‘Pv) suchthat
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(1) ‘PE : —~ F)2 is a diffeomorphismsuchthat ‘PE((El)~)= (E2)~for each
pEM,

(2) ço1,: V1 —‘ V2 is avectorbundleisomorphism,and
(3) thefollowing diagramis commutative:

E1xE1 V1

coExwE -~ J’’Pv

E2xE2~+ V2

DEFINITION 33. We say that (E,V,S,a) is a pointed affine bundle over M if

(E,V,8) is an affine bundleover M and a : M —, E is a global sectionof E.
If (E1,V1,5i,cri) and (E2, V2,S2,a2) arepointedaffinebundles,thentheyaresaid
to be isomorphicif (‘PE,WV) is anisomorphismfrom (E1,V1,51) to (E2,V2,52)
suchthatc°Eo a1 = a2.

As anexampleof how suchpointedaffine bundlesnaturallyarise,considerfor the
momentthespecialcasewhen (V,M, lrv) is the tangentbundleof M. Recall that if

LM is theframebundleof M , then TM maybe recoveredas a bundle associated to
LM andtheusualactionof Ge(m,R) on R~via matrix multiplication (weassume

M is rn-dimensional). Indeedif C~(m,R) acts on LM x lR
tm via g (u,v) =

(ug’,gv) thenthemap ço
0 from E = (LM x R

m)/Ge(m,R) into TM defined
by 40<,([u, v]) = v’e

1 is a vectorbundle isomorphism(here u = (p, e1) E LM,

~ ~ R” , and [u, vi denotestheorbitof Ge(m,R) whichcontains(u,v) ). Moreover

thedifferencefunctionfield 5<, definedby S<,( [u, vJ, [u, w]) = (w~— v’) e provides
uswith anaffine bundle (E,TM, 5<,) which implicitly arisesfrom themap ‘P0 which

identifies E and TM. In this caseweseethat the affine structuremap S~arisesfrom
thecanonical<<solderingmap~t.p~, from E to M via S<,(77,~)= ço,~,(~)—‘P<,(ri) . Our
nextpropositionis trivial but it showsthat everysolderingmap cc : E —p TM gives
riseto anaffine structureS onthepair (E,TM)

PROPOSmON3.1. Assumethat (E, M, IrE) is a fiber bundle andthat (V,M, it~) ~

a vectorbundle. If cc: E —‘ V isa diffeomorphismsuchthat ~(E) = V~for each

p E M, then thefunction S~definedby ~ r~,~) = ~(~)— ~(rj) for ~, ~ E

and p C M is a differencefunctionfield suchthat (F), V,S~)is an affine bundle.
Moreover,if O is the zero sectionof V. then the map a~: M —+ F) definedby

a10(p) = ço’(O(p)) isaglobalsectionof E and (E,V,5~,cY)isapointedaffine
bundle.Conversely,if (E, V, 5) isan affine bundle and E admitsa globalsection,then
for every such section a- the map ~ : E —‘ V defined by cc0 ( ~)= 5~(a( lrE( 0),0
is a fiberpreserving diffeomorphism such that 5,~= 5 and a~= a.
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COROLLARY3.2. Everysolderingmap

cc: ((LM) xR~)/Ge(n,R)—+ TM

definesan affincstivcturc6~,. .

Theproofs of theseresultsareleft to thereader.
Proposition 3.1 assures usthat affinebundlesexistin profusion.

Fora givenaffine bundle (E, V, t5) wedefinethecorrespondingaffine frame bundle

AE A(E,V,5) tobethesetofallelements (p,e~,t)where pE M, {e1} isabasis
of ~, and tE E~.Wedefineanactionof A0 on AE by

(p,e1,t) .(v,g) = (p,eJg~,5;~’.~,)(50(~)(t) + v~e<))

where a is anysectionof E andwhere is themappingfrom E~to V~defined

by ~ —, S~(a(p) , ~). Clearlytheactionis independentof thechoiceof a. Moreover
it is easyto show that AE is a principal fiber bundleover M with group A0 and
projection ir: AE —‘ M definedby ir(p,e,,1) = p.

Assume that thevectorbundle V hasfiber dimensionn and that (E, ~‘, ~, &) is

anypointedaffine spaceof dimensionn. Since i’ is a vectorspaceof dimensionn
thereis anobviousactionof G~(V) on Vr andthis inducesleft actionsof A0 on
and ~‘ asin Section2 (seeEquations(2.1) and (2.2)). Let E and V denotethe fiber

bundlesassociatedto AE and the actionsof A0 on E andon V’ respectively. In

the next paragraphwe show how to definemaps 6,~‘ relativeto which (E,V, 6,~)
becomesapointedaffine bundle.Wewill thenshowthat (E, V, 6,~) is isomorphicto

(E,V,5,a).
WedenotetheassociatedbundlesE and V by E = AE E andV = AEx~V

respectively.‘IS’pical elementsof E will bedenotedby

[u,~] = {(ua’,a~)ja C A0)

for (u,~) C AE x E. Analogousnotationis usedfor V. We define a difference
function field 6: E x E --. V by

= [u,~(i),~)]

for u E AE, i~,~ E E - It is easyto checkthat ~ is well-definedpreciselywhen

a = ~ for a C A0. OntheótherhandtheactionsofA0 on E andon V were
definedintermsof~ insuchawaythata .~= S forall a C A0:

(a.~)(ij,~)= g~(a~~ .,~)

= g~(~’(g’(~(i~)— v)), ~(g
1(~(~ — v)))

(3.1) -

= g[g’(5~(~)— v) — g~’(S-(i
1)— v)]

= ~ — ~a(~~)=
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(here a = (v,g) C A0, ~ E E xE). Notethatif a isaglobalsectionof E then
wemaydefineamapping~: M —‘ E by ~(p) = [(p,e1,a(p)),öi . Observethat~
is well-definedasit dependsonly on ~ and a andnoton thechoiceof frame {e1}.

With thesedefinitions (E,V, 5) is anaffinebundlewhich ispointedwhen(E, V,8)

is pointed.

PROPOSITION3.3. Thepointedaffine bundles(B, V, 6,~) and(E, V,6, a) areiso-

moiphic.

P~vofDefine maps S~E: E —~ E and Wv : V —~ V by

(3.2) WE([(p,e$,t),~J)= 5~1,)((~~+t’)e1)

and

(3.3) ‘pv([(p,e~,t),th]) =

where &<,(~)(i) = t’e,, ~(~) = ~ ii, = tli
1r~ and {rj is some fixed basisof

V. To showthat (WE, Wv) is an isomorphismit is sufficientto restrictone’sattention
to elementsof AE of the form (p, e~,a(p)) sincetypical elementsof AB suchas
(p,e

1,t) maybewrittenas(p,e,,a(p)) -a forsomea CA0 andsince

~= {[(p,e~,a(p)),.~]J(p,e~)C LM,~CE)

V= {[(p,e1,a-(p)),üdI(p,e~) E LM,fuj e V’}

In this notation SoE([(p,e~,a(p)),~])= 5~)(~’e~)and ccv(E(p,e~,a(p)),-u1)=

ü”e1 where 5~(~)= ~r1 and ii~= ü’r1. It is immediate that both c°Eand Wv map
thefibers ~,, V, diffeomorphicallyontothefibers E~,V~respectively.Moreoverit is

obviousthat ~v-IVpis linear. It iseasyto checkthat bothmapsaresmoothmapsasthis

follows from theanalogousargumentsin the linearframe bundlecase.To check(3) of
Definition 3.1 observethat

5P(WE([(p,e~, a(p)),~1]), WE([(p,ei, a-(p)),~2]))

=

— (5’ 5’_,

“~2 ‘~1/ ~

=

=

— cov@~([(p,e~,a(p)),eii,[(p,e~,a(p)),E2)))
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where ~(~ , ~) = ~‘( ~i ~ )r~.It isobviousthat (WEo ~)(p) = a-(p) andthepropo-
sitionfollows.

It follows that (E, V, 5,a) maybeidentifiedwith (E, V,6,~) via (WE, Wv). We

refer to the inverse of this pair (WE, Wv) asthestandardsolderingof (E, V, 5, a) onto

(E,V,S,~).

Thisterminologyarisesfrom the factthat in the lineartheory if we let V = TM be

the tangentbundle and ço~1: V —‘ V = TM bethe standardidentification of V =

LM R
0 with V ,thenthesolderingform 8 on LM is definedvia cc~by

8~(X)=

for u C LM, X C T

0( LM). The map w~’is usuallysuppressedbut it is actually

TM which is being solderedvia ~ to the associated bundle LM XQL(0,R) R
0. In

the affinecaseonedefinesE= TM and V = TM. Foreachp, 5~,:E~x E~—+

is definedby S~(v,w) = w — v. It follows that (F), V,5, a) is a pointedaffine bundle

ifwedefine a(p) tobethezerovectorinT~Mforeach pC M. Then (cc~’,cc~’)
solders (TM, TM,5, a) to thecorrespondingassociatedbundle (B, V,~, ~).

We are now preparedto introducethevectorbundlewhosesectionsare our princi-
pal objectof study. For a given affine bundle (F), V, 5) , let V2 ( E,V) betheunion

U V~( E~,V~)whereV~( F),,, V~)isdefinedasinSection2 relativeto theaffinestruc-
pEM

ture of S~•Eachof the vector spaces V~(F),,, V.a) is infinite dimensional,but given

somereasonabletopologyoneachofthem V2( B,V) will acquireavectorbundlestruc-
ture. Clearly everydifferencefunctionfield on E definesa sectionof this bundleand

thesefields arethe carriers of affine structure.
If E and V arethestandardfibersof E and V ,respectively,then V~( E,V) is

thestandardfiberof V2( E,V) ,thusit sufficesto find atopologyon V
8~( E,V) subject

to theconditions:

(Tl) V8~( E, V) mustbe a Frdchetspace,
(F2) the mappingfrom V~( E, V) x E

2 to V definedby (cv, x) i—’ cv(x) must

be smooth, -

(T3) theactionof A
0 on V~(E, V’) definedby equation(2.1) mustbe smooth.

To seethat sucha topologyexistson V~( E,V), first observethat C~(E
2,

may beidentifiedwith C~(R2~,R). If wegive C00(R20,R) the weakesttopology
which impliesuniform convergenceof sequencesof functionsandtheir derivativeson

compacta,then C~(R2~,R) , andthus C°°(E2 , f/) ,is aFréchetspace.Thistopology
iscalledtheSchwartzC’~-topologyandalthoughRudindoesnotreferto it by namehe
discussesit and its propertiesindetail in [14] (seepages33, 137). Since V~(E,V) is
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a closed subspace of C°°(E2, V) , it is a Fréchet space aswell. Thus V~( E, V) satis-

fies condition(Tl) above.Straightforward,but lengthy,argumentsmaybeconstructed
which show that (F2) and (T3) also hold. The authoris indebtedto therefereefor the

observationthatsucharguments canbecircumventedby noting that Frdchetspacesare
convenientvectorspacesin thesenseof [4] and that (T2) and(T3) follow from thegen-
eralresultsestablishedforconvenientvectorspacesin [4]. Theseremarksprovepart(1)

of thefollowing theorem. .

THEOREM3.4. If ( E,V, 5) isanaffinebundleovera manifoldM with standardfiber

(E,V,~),then
(I) v~(E, V) is a Fréchetspacerelativeto theSchwartzC°°-topology described

aboveand V~( E, V) satisfies (l’l), (72), (73)relativeto this topology,

(2) V2(F),V) = IJ V~( E,,, V~)is a vectorbundlewithstandardfiber V~( E, V),
pEM

and
(3) for arbitrary smooth(local) sectionsa

1,a2 : U —~ B of F) and cv : U —i

V
2(F),V) of V2(F),V) the mapping defined by p i—* a(p)(a

1(p),a2(p)) isa

smoothsectionof V.

Proof Theproofof statement(1) wasoutlinedprior to thestatementofthe theorem.
Theproofof (2) requiresthedevelopmentof someideaswhichare usefulbelow. Con-
sequentlywedefertheproofof (2) preferringto first prove(3) using(2). Givenlocal
sectionsa1,a2 : U -~ F) and a : U —~ V

2(E,V) , it is obviousthat themapping

cv(a
1,a2) definedby p i—’ a(p)(a1(p),a-2(p)) is a sectionof thevectorbundle V.

We haveonly to show that a(a1 , a2) is smooth. Sincesmoothnessis a localprop-

erty, it sufficestoassumethat E, V and V
2( E,V) aretrivial overU with trivializing

mappings~u’ ‘Pu and I’~, respectively.It is shownin theproofof (2) belowthat f~
maybe definedto bethemappingfrom U V~(E,,,V~)to U x V~(E,V) givenby

pEU

“~(/‘3) (P’$u) where 13C V~(E,,,V~)andwhere

=

for (i),~)C Ex E. Ifwedefine ~, : U —+ E, i= 1,2 ,by (p,~,(p))=

for all p C U , thenclearly ~ are smoothand,for eachp C U,

a(aJ,a2)(p)= ~

The mappingp i—9 a(p)u is smoothsincea(p)~ ir
2 (~~(cv(p))). It follows from

the topologicalproperty (T2) abovethat the mapping p i—~ cv(p)u(~i(p),~2(p)) ~S

smooth.Thus cv(a1,a2) is smoothand (3) follows.
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To prove(2) it is necessaryto show that thereexistsa family {~~}of trivializing
mappingswhosetransitionfunctions aresmooth.It turnsout tobeusefultoknowthatnot

onlyis thistruebut, in fact,thesetransitionfunctionsarerelatedtotransitionfunctionsof
AF) in sucha waythatonecanshowthatthevectorbundleV2 (F),V) is anassociated

bundleof AF). Sinceweneedthis factin Sections4 and5 weproceedto developthese
ideasin moredetail.

Assume that we are given an open cover {U} of M and,for each U in thecover,

a pairof trivializing mappings

11)u:-lrE’(U)—9UXE ~u:i~(U)_~UxV

which satisfythethird conditionof Definition 3.2. For U and W in thecoversuchthat

U n W ~ 0, let ~ : U fl W~ Duff ( E) and 9uw : U fl W -~ G~(V) bedefined
by

(34) (~~wo~)(p,0=(p,f~~(p)(~))
(Wwo’P~’)(p,()= (p,g~w(p)(0)

for p C U fl W and ~ e E, ( C V. We haveassumedthat themaps {W~} are

all linearon fibers and it canbe shownusing(3) of Definition 3.2 that the mappings

f~~(p) ateaffine mappingsfor eachp C U fl W. Indeedaneasycomputationshows

that

=

for pE UflW, E,iiC E.Thisfactmaybeusedtoshowthat

(3.5) f~~(p)(0= ~‘(gu~(p)~t
0(0 + v(p))

where p C U fl W, ~ C E, t~C E, and v(p) = ~0(f~,(p)(t0)). Given i~C

E anda fixed basis {~,}of V we define local sections {ru} of AE by Tu(p) =

(p,w~’(p,~~), ‘(p,~~))for pC U. If U and W aremembersofthegivencover
of M suchthat U fl W ~ 0 then- ~ and TW are relatedby theidentity

(3.6) ru(p) = rw(p)auv(p)

where pC Un W and a~w(p)= (v(p),guw(p)) C V’iC~(V) . Thus {aUW} is a
setofcocyclesof AB , thecocyclesdeterminedby thelocal trivializationof (E, V, 6)

Using the trivializations {~} and {‘P~} we definemappings{~~}as follows.
For each U in the cover,let I’~,be the mappingfrom V

2 ( ir~(U), lrv’ (U)) into
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U x V~(E,V) defined by Tu(cv) = (ir(cv),Ewu) ,where 11 : V
2(B,V) —+ M is

givenby requiringthat ir( V2(F),,,V,)) = p for every p C M andwhere

= ir
2(tp~(cv( i,b~(ir(cv),0, ~‘(ir(cv),i~))))

for ~, i~C E. Themapping T’~~is a bijection and is linear on fibers. Moreover,for

pEUflW, aEir
1({p}),wehave

~ =Ir
2(’Pw(cv(~(p,~),(p,~))))

=9uw(p)(Ir2((Wuoao(~~x ~1))

((p, f~~(p)(~)),(p,f~u(p)(~)))))

~ f~~(p)(~))

for ~,i7 C E. If wedefinemaps {h~~}by

(3.7) huw(p)($) = 9uw(P)ofl °(fuw(pY’ x f~~(p)~)

for pEUflW andf3Eir~({p}),then

1’w(a) = (Ir(cv),h~w(p)(7r2(T’u(cv))))

and

(3.8) (r~or’~’)(p,a~)= (p,h~~(p)(&))

for p C U fl W, cv C ir~( {p}), Ew C V~(E, V’) . Thus {h~~)is a setof transition

functionsfor V
2(F), V) andit will follow that V2 (F), V) is avectorbundleif wecan

showthatthe {huw} aresmooth.
It isobviousthat 9~wand f~waresmoothandconsequentlysoisthemapping b~

(Un W) x V2 —‘ G~(V) x V2 x Aff ( E2) definedby ‘I~(p,Ew) = (guw(p), ~‘ ftrw

(p) ~X f~w(p) 1)~Moreoverthe mapping ~I2 : G~(V) x V2 x Aff ( E2) V2

definedby (I)
2(g,Ew,f) = g o Ew o f is also smooth(see [4], [6], or [12]). Since
= ~ for p C Un W, Ev C V~(E,V) it follows that

(p, Ew) ~‘ huw(p)(Er) is a smoothmapping. Many authorsconsiderthis to be ade-

quatein orderthat V
2(E,V) bea vectorbundle (see[6] or [12J).Othersrequire that

huw : UflW —9End(V~(E,V))besmooth.Since V~(E,V) isaFrdchetspace,it
is aconvenientvectorspacein thesenseof [4]. It follows from Theorem3.6.5of [4] that

End (V~( E,V)) hasaconvenientstructurerelativetowhichthemappings{ h
11~}are

smooth.Thus V
2(F),V) is avectorbundlein this strongersenseaswell. The proofof

Theorem3.4 isnow complete.
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Observe thatin theprocessofprovingTheorem3.4wehaveshownthatthemappings
{OUW} defined by (3.6) is a setof cocycles for theaffine framebundle AB, andthat

{ h~j~y} is asetofcocyclesforthevectorbundle V2 (F),V) (seeequation(3.8)).More-
over,equation(3.5) showsthat f~~(p)istheaffinemappingon E whichis identified
with (v(p),guw(P)) = auw(p) relativeto the splitting of Aff(6

0) as a semidirect
productV~G~(V) definedin Section2. Thuswemayidentify themappings{f~~}
asaSetof cocyclesof AE , andequation(3.7) showsthat the {f~,}and {h~~}are

relatedby theidentity

(3.9) huw(p)($) = fuw(p) . /3

wherep C U fl W andwhere f~~(p) ./3 denotestheactionof f~,(p) C Aff (5~)

°~~3C V~(E, V) definedby equation(2.1). A local trivializationforthevectorbundle
AF) x~,,V~( E,V) isgivenby thefamily of mappings{t~}definedby requiringthat

tu([~ru(p),Ev]) = (p,Ev)

for p C U, & C V~(E,V). It follows easily from (3.9) that the {h~~}are ti-an-
sition functions for this trivialization. Moreover,general arguments such as thosein

Husemoller[8], pages59-64, andVaisman[16], page106,show that V
2(E, V) is iso-

morphicto thebundleassocintedto theaffine framebundle AF) andtheactiondefined

by equation(2.1). Neitherof thecited referencesformulatetheir argumentsin thecat-
egoryof Frdchetvectorbundles,but FrölicherandKriegl [4] provideus with a setting

generalenoughthat the usualargumentsmay beusedto show that V2(E,V) is iso-
morphicto theassociatedbundle AE X~(~) V~(E~V).

COROLLARY 3.5. The vectorbundleV2 (F),V) isisomorphicto thebundleassociated

to theprinci~a1bundleofaffineframesAE of ( E, V,5) andtheaction ofV~s~( V)

ontheFrdchetspaceV! ( E, V) definedbyequation(2.1). .

Although thecocycleargumentgiven aboveprovesCorollary 3.5, we find it useful

to havean explicit formula for this isomorphismin Sections4 and 5. For (u, cv) C
AF) x V~(E,V),let (u,cv)* denotetheelementof V2(E,V) definedby

(3.10) (u,a),~([u,~],[u,~])=

where u C AF), i~ E E and ir(u) = p. Here B = AF) XA E, V = AE XA

V, and V2(F),V) is identified with V2(~,V). Themapping (u, cv) i—+ (u, a)4 is
constanton orbits of theactionof A

0 on AE x V~( E, V) andconsequentlydefines
a mappingfrom AE XA V~( E,V) := [AE x V~(E, V) ] /A0 onto V

2 ( E,V). A
straightforward,but tediousargument,showsthat themappingdefinedby

(3.11) [u,a] ,__,(u,a)*
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is anexplicit isomorphismfrom AB XA V~~(E,V) onto V
2(E,V).

With Corollary3.5 in hand,it is trivial toobtaintheusualone-to-onecorrespondence
between sections of V2 (E,V) andequivariantmapsfrom AB into V2( E, V) . Given
asectiona : M —* V2(B,V) ~ AE XA V~(E,V)thecorrespondingequivariant
mappingis theuniqueequivariantmapping & : AB —i V~(E, V) suchthat

(3.12) a(p) = [u,&(u)]

for any u C AF) suchthat ir( u) = p. Conversely,given any equivariantmapping

&: AE —# V~(E,V) , equation(3.7) clearlydefinesauniquesectiona of V2 (E, V).

PROPOSmON3.6.Assumea, r: U —~ F) arearbitrarylocal sectionsofF) andthatcv:

U —+ V2 (F), V) is anylocal sectionof V2 (F),V) . Let &, ~, & be thecorresponding

equivariantmappingsfrom (AE)I into E, E, and V2(E, V) , respectively. Then
&( &, ~) isanequivariantmappingfrom (AB)1~into V and thecorrespondingsection

ofV iscv(a,r).

Proof For U CAB and a CA
0 wehave

=

(a~.&)(u)(a~.ty(u), a~.~-(u))

= g’&(u)(aa’&(u), aa’~(u))

=

where a = (v,g) C A0. Thus &( &, ~) is anequivariantmappingfrom AE into V.
To establishthecorrespondencebetweencv( a,r) and&( &, ~) wefind it convenient

to passto associatedbundlenotation: B ~ B, V ~ V, V
2(F),V) ~ V2(E,V) ~‘

AF) XA V~(E,V).Then

cv(a,r)(p) = cv(p)(a(p),r(p))

=

= (u,&(u))4([u,&(u)],[u,q—(u)])

= [u,&(u)(&(u),i~(u))]

=

forany U C AE suchthat ir( u) = p. Thepropositionfollows. •
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4. COVARIANT DERIVATIVES OF DIFFERENCE FUNCTION FIELDS AND
THEIR GEOMETRICAL INTERPRETATION

In this sectionwedevelopfundamentalfactsaboutthecovariantderivativesof differ-

encefunction fields definedon agivenaffinebundle (E, V, 5) . To do this wefirst con-

sidertheexteriorcovariantderivativcofequivariantmaps& from AE into ‘V2(E,V)
This derivative will lead us to corresponding facts regarding the covariantderivativeof

sectionsof l’2(E,V) ~ V~(E,V)- This procedureis analogousto a correspond-

ing developmentfor metricswherebyexteriorcovariantderivativesof equivariantmaps

LM —~ T
2

0R~lead to relevantfactsregardingthe covariantderivative V~gof

metrics g definedon a manifold M. In this sectionwewill also discussthe extentto

which an equivariantmapping ~ defined by a difference function field 5 may be re-

gardedasa symmetry-breakingfield. In suchacasewe will seethataconnection w on

AE reducesto a subbundle~~(8~) iff DW~= 0 - This developmentis againanalo-
gousto what happensin themetriccasewherebyaconnectionw on the framebundle

LM reducesto the bundleof orthonormalframesiff D~= 0 - Therearcimportant
differences,however,as it is not clearunderwhat circumstancesa differencefunction

field inducesa symmetry-breakingequivariantmapping ~. We are ableto analyzethe

situationin the specialcasethat ~ hasits valuesin thespaceAff 2( E V) fl V,( E, V)
of affirm difference function fields.

We first showhow to obtain theexteriorcovariantderivativeof an arbitrarysmooth

equivariantmapping & from AE into V~(E,V) - This is givenby theusualformula

onceonehasa definition of theexteriorderivative. Thewayhasbeenpavedfor this in

Section3. Eventhough V~( E, V) is infinite dimensionalwe needonly thetopological

conditions(TI) - (T3) to guaranteethatfor u C AE and X E T~(AE)we maydefine

d,h&(X) by the formula

(d~&)(X)=

where ‘y : (—c, �) —i AE is anycurve suchthat ‘y(O) = u, ~j(0) = X . Moreover,it

follows easilythat

(d~&)(X)(~j,~)= d~(ev(~)o

where ev(~)o ~ is a function from AE into the finite dimensionalvector spaceV.
In particularwe have

(4.1) ev(~-)o cL& = d(ev(~)o
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DEFINITION4.1. If w isaconnectionontheprincipalfiberbundleAB and &: AE

V~(E,V) is anequivariantmapping,then theexteriorcovariantderivativeof &, de-
notedby Dw& = D&, is the mappingfrom TAB into V~(E,V) definedby D~&
(X) = d~&(horX) for U C AB, X C TUAF). HerehorX denotesthehorizontal

partof thetangentvector X (see[10]).

Since& : AB —~ V~( E,V) has its valuesin avectorspacethestandardargument

appliesto showthatonestill hasthe identity

(4.1) (D,4&)(X) = d~&(X)+ w(X) . &(u)

for u C AF), X C TUAE. Here w(X) &(u) denotesthe actionof the Lie algebra
elementw(X) C a0 on &( u) C V~( E, V) explicatedin Section2. In fact it follows
from thedefinitionof this that

(D~&)(X)(ij,b=(d~&)(X)(~,~)+WL(X) .&(~)(j~,.~E)
(4.2) -

—d(~)(&(u))(w(X).-5~,w(X) -~)

where u C AE, X C TU(AE) and ~ E E. Here wL(X) denotesthe <<linear
part>> of w(X) andthe term d(~)(&(u)) is indicativeof thenonlinearityimplicit in

elementsof V~(E, V)
Whenoneconsidersthefactthat equivariantmapsof thetype & arisefrom general

diffeomorphisms,it is somewhatsurprisingthat all the nonlinearfeaturesof DEw may

beencapsulatedinto theoneterm d(~)(&(u))(w(X)~,w(X)~). On theotherhand
this term is in generalnoteasily simplified(althoughthe bilinearity of d(&(u)) is of
someusein this respect).

In thespecialcasethat & hasall of its valuesin the set Aff
2 ( E, V) of affineel-

ementsof V~(E,V) somereductionof(4.2) is possible. In moredetail, recall from

Section2thatif&(u) C Aff2(E,V) then thereexistlinearmaps£
1(u), £2(u) from

V to V andavectorv(u) C V suchthat

&(u) = £2(u) ° ~ ~2 — £1(u) o o + v(u)

Since v(u) = &(u)(&,&), £2(u)(x)= &(u)(&,~’(z)) — v(u) ,and£1(u)(x)

—&(u)(~’(z),&)+ v(u) forevery u CAB and xE V,we seethat £1,~2 and

v aresmoothfunctions. It follows from (3) of Proposition2.4 andtheidentity D~&=
d,~&+w-&(u) that

D~&=d~&+[WL,~2(U)] 0*2 —[WL,~1(U)Io*~
— [p2(u) OWT —p1(u) OW~]+ . v(u)
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wherew = WL + WT.

Since our primary objective is to develop an appropriatearenafor affine geometry

we aremostly interestedin maps & which havetheir valuesin D
1( ~, V) , theset of

differencefunctionson E. Thereis no appreciablereductionof (4.2) for this case,but

if & hasits valuesin theset Aff
2(E, V) fl V

3(E, V) of affine differencefunctions
then (4.3) reducesfurtherandwehavetheresult:

PRoposmoN4.1. Assumethat &: AF) —÷V~(E,V) isan equivariant mapping with
valuesin theset Aff

2 ( E, V) fl V
3( E, V) ofaffinedifferencefunctions. Then

(1) thereisa function£ from AE into G~(V) suchthat

(i) £(ua) = g’~(u)g,and
(ii) &(u) = £(u)5 foreveryu C AE and a = (v,g) CA0,

(2) D~&=d~&+[wL,~(u)]~,and

(3) D~&= (D0e)e(u)-
1. &(u) forall u CAB.

Proof To seethat (1) (ii) istrue observethat if & is affine weknow that

&(u) = £
2(u) C 5~0 ~2 — £1(u) 0 5~0 + v(u)

for linearmaps L~(u), £2 ( u) andsomevector v(U) . Since &( u) is assumed to be
a differencefunction it follows that v( U) = &( u) (ö-, Er) = 0. Moreover,we also

havethat &( u) ( ~, Er) = —&( u) (Er,x) for all z C E, from which it follows that

= £2(U)(S~(x)) for all xC E. Thus £~= £2 and

&(u) ~1(U) o( oir2 —5~oir~)=E1(u)~.

To seethat (1)(i) is trueobservethat the equivarianceof & implies that £(ua) a =

a’.[E(u)o~]foralluCAEanda(v,g)EA0.NoW

(a_i [e(u)0 8])(i~,e)= g’.~(u)(5~(a~)— 5a(a~))

= g~(u)(g~(~)—

- = (g~
3e(u)g)s(~,~)

It follows that £(ua) = g~~(u)gand (1) isproven. Statement(2) follows easilyfrom

formula (4.3) andthefactthat £~= £2 . Finally, (3) follows from theequation

D&= d&+ [WL,e]o= (de+ k~L,eI)s=

ThusProposition4.1 is established. •
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At this pointweconsidertheproblemof how onecovariantlydifferentiatesa section

cv of V2(E, V) with respectto a vectorfield X definedon M. We also derivea
formula for this derivativewhich is analogousto a correspondingformula for V~~
which ‘arises in metricgeometry.

In particular werecall thatif g is a metricand X andY arevectorfields then

(V~g)(X,Y)= V~(g(X,Y))—g(V~X,Y)—g(X,V~Y)

foreachvectorfield Z. Metric geometriesare characterizedby requiring that V~g=

0 for all Z. It is our purpose,in the next few paragraphs,to developa formula for
differencefunctionfields analogousto this known formulafor metrics.An equationof
thetype Vxcv = 0 for all X would thendefine<<affine geometries>>atamoreprimitive

level thanmaybe accomplishedusingmetrics.
The formulawederivestatesthat foreveryvectorfield Z andsections i and 11 of

(E,V,Ô,~’)~‘ (E,V,5,a)

(Vzcv)(,L,u)= Vz(cv(~,u))—dcv(V~~t,V~v).

To makesenseof this formulaweneedto knowhowto differentiatesectionsofthevector

bundle V2(F),V).
Recall from [10] (page 115) how thecovariant derivativeof a sectionof a vector

bundleis related to the exteriorcovariant derivativeof its correspondingequivariant

mapping.If (P, M, ir) is a principalbundle,C x V —‘ V is anactionof thestruc-
turegroup C of P on a vectorspace V, and V is thecorrespondingvectorbundle,
thencovariantderivativesof sectionsa of V correspondto covariantderivativesof

equivariantmappings~ : P —‘ V via theformula

(Vxa)~ [U,X~a] = [U,Du1~ba(X~)]

for u C P, p = ir( U), X C T~(
0)M and X~thehorizontallift of X to U C P.

DEFINITION 4.2. Let w be anyconnectionon AE. If cv is a sectionof the vector
bundle V

2(F), V) and X is a tangentvectorto M at p C M we define Vxa by

theformula (V~cv)~= [u, (D
0&) ( X) I where u C AB suchthat ir( U) = p, & is

theequivariantmappingfrom AF) into V~( E, V) correspondingto a, and X~is the

w-horizontal lift of X to U.

If X is a vectorfield on M and a is a sectionof V
2(E,V) , then Vxa is a

sectionofAExAV~(E,V) whichwehaveidentifiedwithV2(E,V) ~‘ V2(E,V).

Relative to this identificationwehavethe formula

(Vxcv)([U,i1, ~
(4.4) -

= [U,(D~&)(X:)(~,e)]

for U C AE, ij,~C E. Here X~is thehorizontallift of thevectorfield X to AB
andthesymbol * is definedby equation(3.10).
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THEOREM4.2. If p and ii are sectionsofthe affine bundle(E, V,5,a) and a is a
sectionof V2(F),V) ,then

(Vxcv)(p,1i) = Vx(a(p,u)) — da(Vxp,Vxv)

foreveryvectorfield X on M.

REMARK. Beforeweproceedwith theproofofTheorem4.1weclarify whatwemeanby

da(Vxp,V~v). Thefunction dcv(Vip, Viii) is a compactnotationfor thesection

of V definedby

dcv(Vxp,V~v)(p) = d(~(~)~(P))(a(p))((Vxp)(p),(VXu)(p))

forall pC M.

We find thefollowing lemmausefulin theproofof theTheorem.

LEMMA 4.3. If U C AB, p = lr(U) , and X is thehorizontallift ofX~,to u, then

dcv(V~p,V~zi)(p)=

[U,d(~(~)t,(~))(&(u))(D,JL(X~), D
0I’(X~))]

where ~, 1’, & are theequivariantmappingscorrespondingto thesectionsp, ii, cv, re-

spectively.

P~vofLet (i~,~)CEX E, v0=[U,i~0}, w0=[u,e01.Wefirstshowthat

d(V,W)(cv(p))([u,i~I,[u,~]) =

for all ‘i),~ C E (here we identify (E,V,5,a) with (E,V,6,5)). Let )~,,c

(—c,e) —+ be curves in E suchthat )~(0)= ~ = ~, and ~j.(0) = i~,~
(0) = ~ (herewe identify T~Eand with E via the mappings ~ 0 d~08~

and ~ 1 0 d~5~respectively).Wehavethat

=

for t C (—e, e) . Differentiatingat t = 0 yields

d(VW)(cv(p))([u,i~I,[U,~I)=
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Since p(p) = [U,~i(U)J, 11(p) = [u,i’(u)] for U C AB, p = 7r(u) this result

impliesthat

d(cv(p))((Vxp)(p) ,(V~v)(p))

= d(M(P)~(P))(cv(p))([u,D(X)I,[u,D~(X)])

=

Thelemmafollows.

ProofofTheorem4.2. Inorderto establishtheresultV~cv( p, ii) = V~( a( p, ii)) —

da(Vip, V~v) it is convenientto write eachterm in termsof the exterior covariant

derivativeon thebundle.The lemmadoesthis for da(Vip, Vxv). It wasshown in
Proposition3.6 that &(~,1’) is the equivariantmappingcorrespondingto the section
cv(p, ii) of V = V. Thus,by definition,

= [u,D~(&(~,ii))(X)J

It follows from Equation(4.4) that

(Vxcv)~(p(p),v(p)) = [u,(D~&)(X~)([~(u),~(u))].

Thustheidentitywe aretrying to establishreducesto

(D~&)(X~)(~i(u),i’(u))

—

Since X ishorizontalthe latteridentity isequivalentto

- (d,~&)(X~)(i~(u),i’(u))= d~(&(~,I’))(X)

It remainsonly to verify this identity. Let f: AB x AB —~ V bedefinedby

f(v,w) =

and let g : AB —* V begivenby g(u) = f(u,u) = &(u)(ii(u),i’(u)). Now

d~g= (d1f)(~~)+ (d2f)(,~)where (d1 f)(~)is theexteriorderivative of the map
x —~ f(x,w) at x = v and (d2f)~U,~)is theexteriorderivativeof the map y —#

f(v,y) at y = w. But f(x,w) = &(x)(~l(w),I~(w))= (ev(~(W)~(~))0

implies that (dlf)(VW)(X) = d~[ev(~()-9~))0 &1(X) = [ev(~(W),I.(W)) od~&](X)=
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(d~&)(X) (~(w), i’( w)) forevery (v, w) C AE X AB and X C TVAE. Thus we
have

(4.5) (dlf)(,~U)(X)= (d,~&)(X)(ji(u),i’(u))

On theotherhandobservethat f( v,y) = &( v)(~(y), i’( y)) = [&(v) 0 (j~X 1’)] (y)

for each y C AB , andconsequently

- (d2f)(~~)(Y)= d(~(~)~(~))(&(v))od~(~X i’)](Y)

= [d~()~())(&(v)) o(d~ x dui)](Y)

forall v,wCAE, YCT~AB.Thuswehave

(4.6) (d2f)(~,~)(Y)= ~

It follows from (4.5) and(4.6) that

d~g(Z) (d0&)(Z)(1~(u),u’(u))

+ d(~(U)~(~)(&(u))(dJi(Z),d~I’(Z))

foreach UCAB, ZCT~AF).Thus

d~(&(~i,i’))(Z)=

+

and thetheoremfollows.

REMARK. Recall from Section2 that if (i7,~)C E x E and U C AE, then d(~1~)

(&( u)) is regarded as a mapping from E x E to V via its identificationwith ~
(&( u)) which isdefinedby

0 [((d~~)
1 o~x ((d~8a)~’°~~)1•

Althoughwedonotexplicitly usethefact, it is interestingto notethat for fixed (~,~) E

E x E themappingfrom AE into V~( E, V) defined by

U —9 d~,~(&(u))

is an equivariant mappingrelativeto the actionof A
0 on V8

2(E, V) defined by

[(v,g) .3](~,~)= g/3(~i’(g~’.6~(~)),~~(g’ .~(~)))
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for (v,g) C A0, /3 C ‘V~(E, V), (~,~)e . Thus if Er is equivariantrelativeto

the<<usual>>actionofA0 on ~ V) ,thenthemapu —i d(~)(&(u)) isequivariant
relativeto amodificationofthe usualactionwhich getsrid of the<<translationalpart>>of
theaction. Theproofof this remarkis easybut tediousand is left to the reader.

Recallthat if g is ametricona manifold M and ~ is thecorrespondingequivariant
mappingfrom theframebundle LM to T2

0R0 , then a connection w is a metriccon-

nectionif w reducesto theorthonormalframebundleand this is trueif D~= 0 . In
this casetheorthonormalframe bundleis a <<level surface>>of the mapping~.

Inourpresentcontextnotethatif Er: AB —~ V~(E,V) isequivariantandif&(AE)

is a singleorbit of V~(E,V) relativeto the action of A
0 on V~(E,V) , then for

eacha0 C &(AE), &~‘(cv0)is a subbundleof AE with structuregrouptheisotropy
subgroupof a0 (see[15],page297). In sucha casewesaythat & reducesAE. In the
casethat & reducesAM agivenconnectionw on AM may ormaynotreducetothe

subbundle&
1(cv) . In factit is well-knownthat w reduces to &~‘(a

0) if DW& = 0

(see[15], page298).
Onefeatureoccursin the presentcontext which has no parallelin the metriccase.

We havea givendifferencefunction 6 on E x E which hasplayeda central role in
all that wehavedone(recall that the actionof A0 on E dependson ~ andthusso
doestheextendedactionof A0 on V~(E,V)). Wemay definea mapping ~ : AE —‘

V~(E,V)byrequiringthat6(u) = S forall u E AB. It follows from (3.4) of Section

3 that a = ~ for all a C A0 andconsequently 6 is equivariant.Moreover,the fact
that a . 6 = 6 for all a C A0 impliesthat b . 6 0 for all b C a0. Thus,for any
connectionw on AB, D = 0 . It follows that for this specialmapping ~ no real

reductionactuallyoccursalthoughthe formal definitionof bundlereductionis satisfied.

Ontheotherhandit is easyto seethat thereexistdifferencefunctionfields whichdo
reduceAB. This is the case if cv is a differencefunction field whosecorresponding

equivariantmapping & carriesAB onto an orbit of thedifferencefunction a0 = LQ8

for somelinearmapping£~from V to V.

THEOREM4.4. Let L~:V —~ V be anylinearmappingand let a0 = L~6.An equivari-
ant mapping& : AB —~ V~(E’, V) carries AE onto theorbitofL~6if & 1 (L~6)is

a subbundleofAE with structuregroup

C1 = {(v,g) C A,j[g,L0] = 0)

If & carries AB ontotheorbitof£~c5whereL~isbijectiveandif we defineL: AE —~

V(V) by &( u) = £(u) 6, then £ is an equivariant mappingwith respectto the action

ofA0 on GL(V) definedby (v, g) . h = g g. Moreover,anygivenconnection w
on AB reducesto &~(L~6)if 0 = D.)L = dL + [WL, £1.
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Proof First observe that if a = (v, g) C A0 and (i~,~)C E X E then (a

cv0)(i~,~)~ =(gt0g
1)(a.~)(i~,~)~

Thus theorbitof cv
0 is givenby

A0 a0 {(gL0g’)~~gCC~(V)}.

The samecomputationshowsthat the isotropysubgroupof a0,definedto be the set
ofall a = (v,g) CA0 suchthata ~cv0= a0,ispreciselythesetofall(v,g) such
that gL0g~= £~.Thusif Er is an equivariantmappingwhich carries AE onto the

orbit of someaffine differencefunction cv0 = £~óthen & hasthe finite dimensional
vector space gt( V)~ as its rangeand consequently Er reducesAE to a subbundleof

AE having asstructuregroup thesetof all (v, g) C A0 suchthat [g, £~]= 0 (see
[15], page297). If we definean actionof A0 on CL(V) by (v,g) . h = ghg~’for

(v, g) C A0, h C CL( V) , thenthecomputationin thefirst sentenceof this proofalso

showsthat if we define £ : AE —+ C~(V) by requiringthat &( u) = £(u) 6 then

£(Ua) = g~’L(u)g= a~ £(u) for all a C A0, u C AE. Thefact that w reducesto

= £‘(L0) if D’~= 0 is well-known(see[15]). .

5. AFFINE STRUCTURE MAPS AND THEIR COVARIANT DERIVATIVES

In thephysicaltheory [13] which motivatesthis investigationonewishesto allow

the possibilitythatboth thedifferencefunctionfield S and thesectiona of an affine
bundle (F),V,5, a) be variable. Thissituationis analogousto that which occursin

general relativity. In thattheorythearenais a spacetimemanifold inwhich themetricis
notgivendirectlybut ratheris selectedby Einstein’sequationsalong with appropriate

boundaryconditions.Thusoneconsiderstheclassof all metricsonthegivenspacetime
manifoldandutilizes a variationalprincipleto selectthephysicalmetric. In the affine

unified theoryof gravity andelectromagnetisminitiatedin [13] it is notyetclearwhatthe
basicvariableswill be. It is likely thatthemetric g , the difference function field S , and

the section a will all play afundamentalrole. It isprobablethatthetriple (g,5, a) will
participatein someway in avariationalprocedureto selecttheappropriatemetric-affine

theorytodescribegravity and electromagnetism.
Given an affinebundle(B, V,5, a) weObservedin Section 2 that S definesadiffeo-

morphism Pi : B —. V whichis fiberpreservingandwhichcarries a to the 0-section

of V. Thismappingis definedby ~ = S0(~)(a(7rE(~)),.~). Conversely,if
B —p V is any fiber preservingdiffeomorphism,thena differencefield S,~may

bedefinedfrom B x E to V by

(S~)~(m~)= co(e) —

At first sight it appearsnot to matterwhich formalism oneuses,butwe claim that the
mappings ~ : B —÷ V which are fiber preservinghavemorepotential information
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in them. Our reason is that the difference function field which corresponds to cc
ignores any changes in ~ due to a translation along the fibers of V. More precisely,

if ~ : F)—’ V isdefinedby~(~)= ~)+ )~(ir~(~))where )~: M —‘ V isan

arbitrarysectionof V , thenfor all ~, ~ in the same fiber of B wehave

= ~(~)— ~‘(‘i) = cc(~)— cc(n) = 510(71,0

so that = 5~.The covariant derivatives of ~ and cc will be distinguishedby the

covariantderivativesof their translationalpartswhereasthecovariantderivativesof
and 5,~are, of course,identical. This differenceshowsup mostclearly for the case

of affine differencefunctionfields especiallywhenonecomparesProposition4.1(2)to
Theorem5.2below.

Thusin this sectionwederiveformulasfor thecovariantderivativesof fiber preserv-

ing diffeomorphismsfrom B to V. Wewill alsobriefly discussthequestionasto what

functionsshouldplaytherole of the <<components>>ofa differencefunctionfield relative
to the choice of an affine frame at each point of M.

DEFINITION 5.1. Assumethat F) is a fiber bundleandthat V is a vectorbundle. A

smoothmapping cc from E to V is calledan affinestructuremappingiff it is a fiber-

preservingdifeomorphism. In this casewe refer to as the correspondingaffine
structureon E. I

In the next few paragraphs we derive a formula for thecovariantderivativeof arbi-

traryaffine structuremappingsrelativeto agivenconnectionw on AB. The procedure
is simplified if wemakesomeidentifications.

As before let P.~be the standardfiber of B and V the standard fiber of V. Let

{rk} be a fixed basisof V and identify V with R
0. Wedistinguish two actionsof

A
0 on V ~ R

0. The first of theseactionsis calledthe linearaction and is defined by

(v,g). w = 9W for (v,g) C A
0, w C V ~ R

0. Thesecondactionis calledthe affine

actionofA
0 on V andisdefinedby(v,g).w=gw+vfor(v,g) CA0, 1JJCV.

If (E, V, ~, &) is a fixed pointedaffine space,then E may beidentified with V
via the mapping

6a~Moreover,the action of A
0 on E defined by (2.1) in Section 2

may be identified via ~ with the affine actiondefinedon V as in the lastparagraph.

It follows thenthat if we utilize the linear actionof A0 on V , then V AB XA V
maybe identifiedwith V as in Section 2; but if we utilize the affine action of A0 on

V , then E = AB XA ~ AE XA V maybeidentified with E.
Thus if cc : F) —, V is an affine structuremapping,then we may regard it as a

mappingfrom AB XA V to AE XA V wheretheaffine actionis usedon thedomain
of ~ and thelinear action is usedon the rangeof p. Dearly there is a one-to-one
correspondencebetweenaffine structuremappingsand equivariantmappingsfrom AB
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into Duff ( V) wheretheactionof A,~on Duff ( V) is definedby

(5.1) [(v,g) -f](x) = gf(g’(x—v))

for (v,g) C A0, f C Diff(V) , and x C V. This correspondence is the usual one
whereby cc correspondsto ~ if

(5.2) - ço([U,x]) = [U,çZ(u)(x)]

forall uCAF), zCV.
By analogywith tensorswerequirethat whenevercc: E —, V is a fiber-preserving

diffeomorphism and X is a vectorfield on M , thenV~cc is a fiber-preserving smooth

mapping. Comparisonwith Definition 4.2 leadsus to define V~ccto be the fiber-
preservingsmoothmappingfrom F) to V whichsatisfiesthe identity

(5.3) (Vxco)([u,x]) = [u,(D0Ø)(X)]

where U C AE, x C V, and X is thehorizontallfft of X,~(0)to u. Here D~is
definedby theusualformula:

(5.4) (D,~)(Y) = (d,,~)(horY)

for U C AF), Y C T0AE.As beforehor(Y) denotesthehorizontalcomponentof Y

(see[10]).
Clearly thereare a numberof conditions which must be met in order for the above

definitionstobewell-definedandfor thevariousmapstobesmooth,butoneestablishes

these conditions by analogy with the correspondingresultsfor V~( Pi, V) . Theinfinite
dimensionalvectorspaceM,( V) of all smoothmapsfrom V to V playsthe same

role in this formulation asdoes V~(E, V) in thediscussionin Section4. The results
needonlyminormodificationand thedetailsareleft to thereader.

Theproblemof differentiatingaffine structuremappingsis thusreducedto finding a
formulafor D~.Wehavetheusual formula

(5.5) D~=d~’+w~~

in thepresent case.Thus weneedonly clarify how the Lie algebraa0 of A0 actson

thespace.M8( V) of smoothmappings from V to V. As usual,for a = (i, ~)C a0
choosea one-parametergroup a(t) = (v(t) , g(t)) in A0 such that ~(0) = a and
define(~. f)(x) = *[a(t) . f](x)10 for eachf C .tvl3(V) and x C V. We see
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that

[(j~) .f1(x) =

= ~f(x) —d~f(~x+i)

= ~f(x) —(d~f)(a.x)

Theseremarksprovethe generalresult:

THEOREM 5.1. Assumethat cc : E -~ V is any affinestructure mappingand that

AE —p Diff ( V) is its correspondingequivariantmapping. For ~ C AE and

X CTUAF), (D~c2)(X)isthesmoothmappingfromV to V givenby

(D~~)(X)(x) (d~Ø)(X)(x)+WL(X)Ø(U)(x)

—d~(~(u))(c~(X).~)

forallxCV. .

An interesting subset of the set of all affinestructuremapsfrom afiberbundle B into

a vectorbundle V is that setofmaps cc: F) —~ V such that cc I B,, isanaffine mapping
for eachp C M. Observethat cc belongsto this classof mapsiff its corresponding
equivariantmapping ~ : AB —+ Diff ( V) actuallycarries AE into the set Aff ( V)
of all affine mappings from V to V. Since Aff ( V) is a finite dimensionalLie group
oneexpectssuchstructurefunctionsto bemoretractable.Indeedif ~: AE —p Aff ( V)
is equivariant,thenwemay definemaps ØL : AB —‘ CL( V) and ~T : AE -~ V by

first defining ~T(U) ~(u)(o) where 5 is the zero vector in V and then defining

WL by V-’L = — S~T•Thus 0 = ç2’~+ çS~.maybe decomposedinto a <<linear>> and
<<translational>>part.

If w is a connectionon AB then w hasits values in a0 = gL( n,R) ~ R° and

consequently wehavethat w~(X)= wL(X) + wT(X) where u C AE, X C T,AAE
and c~L(X)C 9L(n,R), WT(X) CR

0. Sincewe haveidentified V with R0 these
definitionsgive us a way of decomposingthe covariantderivativeof anyequivariant
mapping from AE into Aff ( V).

ThEOREM 5.2. If 0 : AE —‘ Aff ( V) isequivariant, then DO = DOL + DOT where

(5.6a) DOL dpi, + [WL, ccLl

(5.6b) DOT = thpT+ WLIPT — ~PTWT-
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Proof It follows from Theorem5.1 that

D~O(X)(x)=(d,~0)(X)(x)+ WL(X)O(u)(x)

—d1(çS(t4))(w(X).x)

for U C AE, X C T.~AB,x C V. Now 0(u) = OL(U) + O(u)(o) and consequently

d~(0(u))= dX(OL(U)) = OL(U) since ~L(U) is alinearmap from V to V. Thus

(D0c6)(X) =(d~O)(X)+ wL(X)O(u)

— WL(U)(WL(X) + WT(X))

+ (d~0~)(X)

+ wL(X)OL(u) + wL(X)OT(u)

— OL(u)(wL(X)) — OL(u)WT(X)

+ [wL(X),OL(u)]

+ (dUOT)(X) + WL(X)OT(u)

—OL(u)wT(X) -

To concludetheproofof the theorem we mustshowthat Dça’~= dOL + [WL, ccLI and
that DOT = dOT + WLOT — OTWT.To establishtheseformulawefirst determinehow

‘PL and OT transformunderchangeof frame.We havethat

O(ua)(x) = OL(Ua)(x) + Ø(ua)(S)

and

O(ua)(x) = [a~1 .O(u)I(x)

g~OL(u)(gx + v) +

= g~OL(u)(gx)+ 9’OL(u)(v) + 910(u)(5)

for U CAB, a = (v,g) C A0, xCV. Thus

(5.7a) OL(ua)(x) =g_10(u)(gx)

(5.7b) OT(ua) = g~OT(u)+ g’Ø~(u)(v)
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for u C AE, a = (v,g) C A0, z C V. Now clearly it follows from (5.7a)that

DOL = dOL+ [wL,ccL]. Becauseofthecouplingof OT and OL in(5.7b)theformula
(5.6b) is not so obvious a consequence of(5.7). To obtain (5.6b) first observe that

(D00)(X)(o) =(d~O)(X)(o)+ WL(X)(O(U)(O))

— OL(u)(w(X)(S))

isaconsequenceofTheorem5.landthefactthatd1(O(u)) = OL(U) . But w(X)(5) =

WT(X) and O(u)(o) = O~(u)imply

(D~0)(X)(o) ev~((d,~0)(X))+ WL(X)(OT(U))

— OL(u)(wy(X))

=d0(ev~o 0)(X) + WL(X)(OT(u))

— 0L(u)(wT(X))

=(d~O~)(X)+w~(X)(çS~(u))

—OL(u)(wr(X))

On theotherhand

(D~O)(X)(o)= (d,~0)(horX)(S)

= evb(d,~O(horX))-

= d,A(evÔoO)(horX)

= (D~O~)(X)-

Thus (D0ç5~)(X)= (D~c2)(X)(o)= (dUOT)(X)+wL(X)OT(u)—OL(u)wT(X)

and the theorem follows. I

If S isadifferencefunctionfield on Ex E with valuesin V , then 6 is an equivari-

antmappingfrom AE into V~( E, V’) . It follows that thereis anequivariantmapping

O from AE into .M,(E, V) suchthat

= ~(u)(~) —

for all u C AB, r~,~ E E. If, in fact, we identify E with V as we have been doing in
this section,then 0 maps AE into Diff(V) . Themapping 0 may or may not carry

AE into Aff( V) , but if it doesthenwe secthat

8(u)(~) = Ot(u)(0 —
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for all u C AE, ‘1, ~C E ~ V. Thus ~ never picks up thetranslationalfeaturesof

0 and,of course,this showsup in the dynamicsof both 6 and S. In fact, it follows
immediatelythat

(D~)(X)(me)= (D0OL)(X)(~)—

andsince DOL = dOL + [WL, cc1) dependsonly onthelinearpartof theconnectionW

weseethatthecovariantderivativeof 6 essentiallyignoresthe factthat weareworking
onthe affine framebundleratherthanthelinearframebundle.Wefind that

D’~ = (D’~q,~)~ — (D~ccL)°

whereweuse w0 instead of Wt andwhere w0 is theuniqueconnectionwhich agrees
with w on LM c AF) butwhich reducesto LM. The pointof theseremarksis that

it is not clear at this point whether theappropriatearenafor a unified theoryof gravity

andelectromagnetismshouldbe thespaceof triples (g,5, a) or the spaceof triples

(~,cc, a). If the theory demands that translational features play an importantrole then
perhaps the latter space would bemoreappropriate.

Finally,wewishto discussbriefly the<components>>of a differencefunctionfield 5.
Recallthat if t is a tensorfield of type () on a manifold M , then thecorresponding

equivariantmapping I : LM —‘ TR
0 picks out the componentsof t. In fact for a

givenframeU C LM, U = (p,e
1) ,oneexpresses t = t~.’/(e~1®.e1 ®e”®~.

andthen I(u) = t~.,!(r~1®. . .®r, ®r” ®. . .®r’~) . Thus I(u) selectsthecompo-
nentsof t in theframe u. In thepresenttheorya differencefunctionfield is a section
of an infinite dimensionalbundleand thus, strictly speaking,hasno components.On

theotherhandwe regard ~
5(u) as representingthe<<components>>of S in the affine

frame u. In thecasewhen 6(u) = 0(u) o 112 — 0(u) o ir~for someequivariantmap-

ping 0 from AE into Aff ( V) , the differencefunction field S becomeslinearand

thecomponentsof S becomemeaningful. If {rk} is the standardbasis of V, then

OL(U)(Fk) = cc~(u)r
1 andwe regard{cc~(u)}as being thecomponentsof theaffine

structuremapping cc in the frame u. By analogywith the case of tensors thecompo-
nentsofS inthe frame u aregivenby~(u) = OL(U)0112 —OL(u)~111 0L(u)Sc,
whereS~r is thestandarddifferencefunction on thevectorspace V, Sç,(x,y) = y — x

for x,y C V. If is thematrix with I in the i-tb row, j-th column and 0 elsewhere

~(u) = cc(tO(E~®5c~)

Weregard{E~® 5~,}asa basisand {cc~(u)}asthecomponentsof S in the frame u
relativeto thisbasis.Thecomponents{cc~(u) } transformlike atensorof type (~) for if
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11= ua istheframegottenby transformingu by a = (v, g) ,thenOL(~i) = a~OL( u)

and

WL(U) = 90L(u)9

or

cc)(ii) = 9’OL(u)g

or

cc(~) = (g’)~cc~(u)g.

Moreover,D~=(D0L)5c~andbyTheorem5.2 D~=(dOL+ [WL,OL])Si~. Thusif
8 is alocal gaugein AF) and ~(p) = cc~(~(p)),then

r7 ~1 ~ —1 A I —k A £ —tv~cc
1— &~cc1+ ~kccJ— ~1cct

where A~,E= WL(dPS(t
9.,)).

6. REMARKS ABOUT AFFINE GEOMETRY IN PHYSICS

In this Sectionwebriefly discusssomeexampleswhich illustrate morespecifically

how ourformalismrelatesto thatusedincertainalready-developedapplicationsofaffine

geometry.
Wetaketheviewthat inmostphysicaltheoriestheconceptof energy-momentummay

be takento bea prilnitive concept,in the sensethat it is notbuilt up from morebasic

conceptsyet practically everyphysical theoryrequiresits consideration.Moreover,in
thosetheoriesin whichchargedparticlesplay arole it appearsthattheconceptof energy-
momentumshouldbeanaffine ratherthanvectorconcept.In physical terms this means

thatobserversinsuchtheoriesmustdistinguishbetweentheenergy-momentaof charged

particlesandofunchargedparticlesandthatonewayof accountingfor thedifferencesis
to providefor a shift of origin in energy-momentum .xspace~. This idea was expressed

explicitly for thefirst timein thework of Norris andhiscollaborators(see[9] and [131).
From this point of view onepostulatesthe existenceof an affine bundle H over

a given space-timemanifold M with the propertythat for p C M the fiber fl,, of
H overp representsall possibleenergy-momentumconfigurationsat p. This is fully
analogoustothefactthat inLagrangianmechanicsthe tangentbundleofa configuration

space Q is avectorbundleoverQ whosefiberat q C Q representsall possiblegener-
alizedvelocityconfigurationsat q. Unlike the Lagrangianmechanicscase,however,it

is our contentionthat in thecaseof chargedparticledynamicsin M one should choose
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a formulationwhich permitsone to considerdiffering choicesof zeroenergy-momenta.
It is arguedin [9] that the presenceof anelectromagneticfield producesa shift in the

energy-momentaof chargedparticleswhich thenredefineswhatit meansfora charged
particleto havezero energy-momentum.Moreover,it is arguedin [13] that in anappro-
priate <affine gauge*theelectromagneticfield itself may beviewedas arising from a

field whichlocally definesa choiceof zeroenergy-momentum.Thusweproposethatin
anycontextwherechargedparticledynamicsis important thenotionof observeritself

shouldincorporatethefollowingdata:
(1) a world-line in space-time,
(2) a referenceframe �moving~smoothlyalongthe world line, and

(3) achoiceof zeroenergy-momentumateachpoint of theworld line.
In otherwordswepostulatethatthenotionofanobserverischaracterizedby defining

anorderedpair (‘y, 8) where ‘y is a curvein the linearframebundle LM of M and
o is a sectionof that partof theenergy-momentumaffinebundle H which liesoverthe

world-line it o ‘y of the observer(ir is theprojectionof LM onto M).
It shouldbe noted that the formalismcanbeutilized in many situationsdepending

on which vectorbundle V serves as the model on which U is defined. Onecould

formulatemodelswhere V could be TM,TIM, a spinorbundleover M , or perhaps

somerelatively complicatedsplicedbundledependingon the specificphysicaltheory
being investigated.In someof thesecasesit will be meaningfulto considerenergy-

momentumconfigurationsof sectionsof therelevantvectorbundle.
Givenazeroof energy-momentum8 of H it admitsanextensionto H (recall

that it o’y definesasubmanifoldof M sinceit is a time-likeworld-line) andif wecall

suchan extension0 , thenthe pointedbundle (U , 8) canbeidentifiedvia Proposition
3.3 with an associatedbundle E of the affine frame bundle AU of H. Underthis
identification 0 is identified with the zero sectionof B. If 9 is a differentzero of

energy-momentum of H then (H, ~) is identifiedwith anotherassociatedbundle

E of AH . Eachof thesegivesavalid descriptionof thezeroof theenergy-momentum
ofanobserverandtheyarerelatedvia translationalgaugefreedomin AU . Forexample,
in thespecialcasethat V = TM theobserver(i~0) definesa curvein thesubbundle

L9M = {(p,e1,0(p))I(p,e1) C LM}

of AM while (~,~) definesa curvein

L~M= {(p, e1,~(p)) I (p, e1) C LM}.

Obviouslytheselie in two differentcopiesof LM insidethe affineframebundle AM

of M, but thereis awell-definedgaugetransformationwhich takeseitherto the other
in AM.
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It is notclearhow far this formalism shouldbe pushed.Onecould takethepointof

view that in anytheoryin which energy-momentum is an affine concept, the Hamilto-
nianof a physicalsystemshouldbedefinedon amomentumspacewhoseelementsare
affine quantities ratherthanvectorquantities.If so, thentheHamiltonian U would be

a functionfrom the momentumbundle H into R where U is not generallya vec-
tor bundlebut ratheris anaffine bundlemodeledon thevectorbundle T* M. As an
exampleof how this would work considerfirst a free (uncharged)particlemoving in
flat Minkowski spacetime M0. Let U0 be the Hamiltonianof this particle. Then

U0(q,~)= ~6~(~,0(q)) where q C M0, ~ C U~,5 is the difference function field

on H and 0 representsthezero energy-momentumof thefreeparticle. If we identify
(H , 9) with thebundleassociatedto AM0 asin thelastparagraph,weseethat (11 , 0)

maybe identifiedwith (T*M0 , 0) where0 isthezerosectionof T*MO . Moreover,5
maybeidentifiedwiththetrivialdifferencefunction (

50)q(P1’P2) = Pi —P2 Assume

now that A is a globallydefined4-potentialof someelectromagneticfield on M
0. If

we define U(q,p) = U0(q,5~(p,A(q))), then U is the Hamiltonianof a charged

particlein M~- Thus A definesa newzeroof energy-momentumandthechargedpar-
ticle Hamiltonian is simply the free Hamiltonianmodified by choosinga newzero of
energy-momentumat eachpoint. Theold physicalvacuumis redefinedto obtaina new

vacuumvia anelectromagneticfield. Theseideasarediscussedfully in [9] wherephys-
ical argumentsaregivento supportthe useof affine structuressuchasthesein charged
particledynamics.

In additionto this examplerelatingto charged particledynamicstherearetantalizing

hints that affine geometry is implicitly utilized elsewherein physics.Norris discussed
NewtonianMechanicswithin suchacontextin [13]. A moretrivial but intriguingexam-
ple occursin relativistic electromagnetism.At eachpoint q of Minkowski space M0

let Cq denotethepastnull light coneat q. Let C = U Cq anddefine 5 on C by
qEM0

Sq(x, y) = — ~ where x = (x°, ), y = (y
0 , ~) areelementsof C~C M

0 . Then
& is adifferencefunctionfield on C modelledon thetrivial vectorbundlewithstandard

fiber R
3. Define a section 9 of C by O(Cq) = q. Given a current J on M

0 the
retardedpotentialassociatedwith J is definedat S C M0 by

A~(x)= f J~(x°- ~I, ~+ ~) (~4).
R~ ui

Here d
3~ denotesLebesguemeasureon R3 and istheLorentzinvariantmeasure

liii
on thecone C~inducedby themapping p —~(~0— I cc

1( u) I, cc~(y)) where cc~
C~—+ R

3 is definedby cc~(v)= y + x. Note that the mapping cc~has theproperty
that it definesthe differencefunction field ~2’ i.e., 5~(y, z) = cc~(y)— cc~(z)for



240 RONALD 0. FULP

y,a C C~.Observealsothat x —~cc~ is a family of fiber diffeomorphismsrelatedto

the affinestructure& of theaffinebundle C as in Section5. It would beinterestingto
reformulatethetheoryofretardedandadvancedpotentialsin termsof affine geometrical

conceptsandto investigatewhethersucha formulation yieldsnewphysical insight into

this somewhatmurky area. Suchan investigationisbeyondthescopeof this paperand
probablyneedstheattentionof aphysicist
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